纺织学报 ›› 2017, Vol. 38 ›› Issue (07): 49-55.doi: 10.13475/j.fzxb.20160703907

• 纺织工程 • 上一篇    下一篇

紧密机织物高气压下面外变形的机制

  

  • 收稿日期:2016-07-15 修回日期:2017-03-27 出版日期:2017-07-15 发布日期:2017-07-18

Out-of–plane deformation of tight woven fabric under high air pressure

  • Received:2016-07-15 Revised:2017-03-27 Online:2017-07-15 Published:2017-07-18

摘要:

为指导设计新型防护面料,依据其防护过程,探索了紧密机织物在高气压下面外变形的机制。结合能量理论和板壳理论,建立了紧密机织物在高气压下面外变形的系统能量平衡方程(机制模型),从能量最小化的角度预测织物变形后的最大变形量和变形轮廓曲线。通过自行搭建的织物变形仪测量了2类不同紧密程度的机织物面外变形情况。结果发现织物变形程度与其弹性模量呈负相关性,随后对织物变形的实验值与理论预测值进行了比较,发现二者之间的误差小于20%。从而证明该数学模型可较为精确地用来预测其他紧密机织物高气压下的面外变形。

关键词: 紧密机织物, 高气压, 面外变形, 数学模型

Abstract:

For guiding new design on next generation of protective fabrics, the deformation mechanism of tight woven fabric under high air pressure were studied. According to the energy theory and mechanism of plates and shells, the energy balance equation for the out-of -plane deformation of tight woven fabric was established. From the minimum energy of the deformation system, the maximum deformation and deformed profile of fabric could be predicted. The out-of-plane deformation of two tight woven fabrics was measured using a self-developed fabric deformation tester. The comparison shows that the deformation is negatively correlated with the elastic modulus of fabric. The accuracy of the mathematical model is verified by experimental data. The comparison shows the model predictions with difference of less than 20% from experimental data, indicting that the analytical model can be used to predict other out-of-plane deformtion of fabrics under high air pressure.

Key words: tight woven fabric, high pressure, out-of-plane deformation, mathematical model

[1] 张东 孟婥. 纱筒残余氨的扩散过程建模与数值模拟[J]. 纺织学报, 2017, 38(09): 149-154.
[2] 常玉萍 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(09): 59-65.
[3] 张宁 李忠健 潘如如 高卫东 韩要宾. 采用色纺纱图像的真实感色织物模拟[J]. 纺织学报, 2017, 38(05): 37-42.
[4] 李忠健 潘如如 高卫东. 应用纱线序列图像的电子织物构建[J]. 纺织学报, 2016, 37(3): 35-0.
[5] 罗娟 郗欣甫 孙以泽. 用于簇绒地毯织机的新型钩刀割绒机构[J]. 纺织学报, 2016, 37(06): 118-123.
[6] 王敏超 熊杰. 双轴向不同拉伸速率下丝素蛋白/聚已内酯复合纳米纤维膜的力学性能[J]. 纺织学报, 2015, 36(06): 18-0.
[7] 王敏超 熊杰. 取向排列丝素蛋白/聚已内酯复合纳米纤维膜的双轴向拉伸性能[J]. 纺织学报, 2015, 36(04): 31-0.
[8] 章斐燕 李启正 祝成炎. 定综片数小提花多臂组织设计方法与CAD实现[J]. 纺织学报, 2014, 35(7): 140-0.
[9] 张中启. 针织毛衫圆形领数学模型的建立[J]. 纺织学报, 2014, 35(1): 102-0.
[10] 邹平 朴江玉 吴世刚 边小佩. 驳折领翻领松度结构设计数学模型的建立[J]. 纺织学报, 2014, 35(1): 107-.
[11] 姚俊红. 基于H∞滤波的异纤光电信号检测[J]. 纺织学报, 2013, 34(9): 125-0.
[12] 曹静 徐伯俊 谢春萍 刘新金 苏旭中. 细纱机电子凸轮的设计[J]. 纺织学报, 2013, 34(12): 117-0.
[13] 黄成 王晓 任春明 王辉 刘燕 刘凯. 亚麻织物接枝率与透气率变化关系的数学模型[J]. 纺织学报, 2013, 34(1): 90-95.
[14] 姚怡 狄宏静. 女装胸围加放量与穿着方式及面料厚度的关系[J]. 纺织学报, 2012, 33(11): 107-111.
[15] 罗昊;李仁旺;朱泽飞;吴迪冲. 服装大批量定制企业订单实施绩效的衡量[J]. 纺织学报, 2010, 31(6): 150-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!