纺织学报 ›› 2017, Vol. 38 ›› Issue (07): 135-141.doi: 10.13475/j.fzxb.20160906707

• 管理与信息化 • 上一篇    下一篇

应用区域颜色分割的机采棉杂质检测方法

  

  • 收稿日期:2016-09-30 修回日期:2017-04-12 出版日期:2017-07-15 发布日期:2017-07-18

Detection method for machine-harvested cotton impurities based on region color segmentation

  • Received:2016-09-30 Revised:2017-04-12 Online:2017-07-15 Published:2017-07-18

摘要:

机采棉中的杂质繁杂,而杂质类型及含量对后期棉花加工工艺的影响很大。为此,提出一种应用区域颜色分割方法以检测棉花中的杂质。在图像分割中,先对滤波后的机采棉图像进行彩色梯度运算,通过扩展极小变换运算获得标记图像,在修改后的梯度图像上运用分水岭算法获得初始分割图像,然后对初始分割图像进行区域合并。区域合并过程中要综合考虑空间邻接性、颜色信息和区域面积3个因素。颜色信息主要采用饱和度、亮度、区域颜色向量模及颜色相似度4 个特征量。用层次递进的合并方法,迭代过程更新信息特征。最后通过支持向量机算法提取颜色、纹理、形状特征对杂质区域进行识别。结果表明,所提方法对机采棉中天然杂质的平均识别率为94%。

关键词: 机采棉, 图像分割, 杂质识别, 标记分水岭, 区域合并, 颜色特征

Abstract:

Machine-harvested cotton impurities are multiply. It is important to detect the type and content of impurities for adjustment of the processing technique of cotton. An impurity detection method based on region color segmentation was presented. During image segmentation stage color gradient image was obtained based on filtered image firstly. Marking image was achieved by H-minima transform, and initial segmentation image was acquired based on modified gradient image by watershed algorithm. Then region merging was conducted for initial segmentation image. Region adjacency, region color feature and region area were considered for region merging. Region color features such as saturation, intensity, region color vector module and color similarity were used. Repeated merging was adopted, and information of color feature was updated in different merging. Finally various features including color, texture and shape were extracted through support vector machines algorithm for impurity recognition. Experimental result show that a successful recognition rate of 94% for natural impurities is achieved.

Key words: machine-harvested cotton, image segmentation, impurity recognition, marker-controlled watershed, rigion merging, color feature

[1] 徐启永 胡峰 王传桐 吴雨川. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(05): 125-131.
[2] 向忠 何旋 钱淼 胡旭东. 基于边缘和颜色特征的织物印花花型检索[J]. 纺织学报, 2018, 39(05): 137-143.
[3] 陈晓春 张彦彬 彭虎 陈翔 褚乃清. 重叠纤类图像的凹点匹配和分割算法[J]. 纺织学报, 2017, 38(11): 143-149.
[4] 尉苗苗 李岳阳 蒋高明 丛洪莲. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016, 37(11): 48-54.
[5] 曹丽 胡旭东. 基于多特征融合的织物印花图像分割[J]. 纺织学报, 2016, 37(08): 149-153.
[6] 田景山 王文敏 王聪 牛玉萍 罗宏海 勾玲 张亚黎 张旺锋. 机械采收方式对新疆棉品质的影响[J]. 纺织学报, 2016, 37(07): 13-17.
[7] 周慧 张华熊 胡洁 康锋. 基于平滑滤波和分水岭算法的重组织织物图像分割[J]. 纺织学报, 2015, 36(08): 38-42.
[8] 徐红 曹吉强 叶伟 谢占林. 锯齿式皮棉清理对机采棉性能的影响[J]. 纺织学报, 2014, 35(1): 35-0.
[9] 张海波 黄铁军 修毅 赵野军 章江华. 基于神经网络的男西装图像情感语义识别[J]. 纺织学报, 2013, 34(12): 138-0.
[10] 卢雨正 高卫东. 基于图像分割的拼色纺织品分色算法[J]. 纺织学报, 2012, 33(9): 55-60.
[11] 景军锋, 孟泰, 李鹏飞. 基于模糊C均值聚类的纺织品印花图像分割[J]. 纺织学报, 2012, 33(6): 97-100.
[12] 张扬 蒋高明 姚君洲 童有成. 基于MRF层次模型的贾卡经编针织物图像分割技术[J]. 纺织学报, 2012, 33(12): 102-106.
[13] 李鹏飞;王刚;景军锋;焦珂. 基于JSEG算法的纺织品印花图像分割[J]. 纺织学报, 2010, 31(5): 137-140.
[14] 包晓敏;彭霄;汪亚明;曹作宝. 基于贝叶斯决策及半监督聚类的织物图像分割[J]. 纺织学报, 2010, 31(2): 125-128.
[15] 徐红;夏鑫. 机采棉与手采棉的性能比较[J]. 纺织学报, 2009, 30(9): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!