纺织学报 ›› 2017, Vol. 38 ›› Issue (02): 81-89.doi: 10.13475/j.fzxb.20161001509

• 纺织工程 • 上一篇    下一篇

基于随机须丛逐步分解模型的纤维长度分布计算方法

  

  • 收稿日期:2016-10-09 修回日期:2016-10-27 出版日期:2017-02-15 发布日期:2017-02-27

Method for calculating fiber length distribution based on hierarchical model of random-beard

  • Received:2016-10-09 Revised:2016-10-27 Online:2017-02-15 Published:2017-02-27

摘要:

为解决新的纤维长度测量方法随机须丛影像法分析纤维长度分布的瓶颈技术,建立了从随机须丛中分离出一定长度界限以下纤维的逐步分解模型,推导出通过须丛线密度曲线的离散点运算获得纤维长度一次累积分布和频率分布的计算公式,避免了以往对须丛线密度曲线二次微分求取长度频率分布时,测量噪声被微分运算放大导致结果失真的问题。将运用逐步分解模型的随机须丛影像法与单纤维测量法测得的纤维长度频率分布直方图进行了对比。结果显示:2种方法测得的棉、毛试样各个长度组质量分数的平均差异分别为0.31%和0.26%,最大差异均小于1%,证明逐步分解模型计算公式具有实际应用价值,可用于纤维长度测量仪器的数据处理。

关键词: 长度分布, 纤维测量, 随机须丛, 逐步分解模型, 直方图

Abstract:

A special hierarchical model was proposed to overcome the bottleneck on the fiber length distribution analysis by a random-beard image method, which is a new method for fiber length determination. Based on the two-end characteristic of random-beard, this model can figure out the proportion of fibers shorter than certain thresholds, and derive out a series of formulas for converting fibrogram to cumulative diagram and length frequency histogram via discontinuous point operations, avoiding the previous differential operations which magnified the measurement noise and lead to serious measurement errors. Both cotton and wool ware tested, respectively with the gauge of 2 mm and 6 mm, using these formulas and a single fiber measurement method. The histograms show that the mean differences of the weight frequencies of each length group from the two methods, are 0.31% and 0.26%, respectively, and the differences are all less than 1%, which means the measurements from the two methods have a good agreement. The new calculation method in this paper is highly precise and valuable for the data processing of fiber length measuring instruments.

Key words: length distribution, fiber measurement, random-beard, hierarchical model, histogram

[1] 宋磊磊 赵玉芬 李嘉禄 陈利 耿伟. 基于混合韦伯分布的碳纤维针刺毡结构表征[J]. 纺织学报, 2017, 38(06): 52-57.
[2] 贾国欣 任家智 冯清国. 基于纤维长度根数分布的精梳加工模拟及棉网质量预测[J]. 纺织学报, 2017, 38(06): 23-27.
[3] 李春雷 高广帅 刘洲峰 刘秋丽 李文羽. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017, 38(03): 149-154.
[4] 曹继鹏 张志丹 孙鹏子. 锡林速度对盖板花纤维长度分布的影响[J]. 纺织学报, 2015, 36(03): 24-0.
[5] 匡雪琴 杨建平 郁崇文. 混合Weibull分布在棉纤维长度分布表征上的应用[J]. 纺织学报, 2014, 35(6): 35-0.
[6] 苏玉恒;严广松;任家智. 牵伸区浮游纤维动态行为的随机模拟[J]. 纺织学报, 2011, 32(3): 30-35.
[7] 吕寅;杨建忠;李发洲. 山羊绒长度变异的测试分析[J]. 纺织学报, 2011, 32(3): 42-46.
[8] 张明光;孙鹏子;曹继鹏. 梳棉机盖板速度对盖板花纤维长度分布的影响[J]. 纺织学报, 2011, 32(3): 47-50.
[9] 王威;黄故. 椰壳纤维长度分布[J]. 纺织学报, 2008, 29(3): 9-12.
[10] 林倩;严广松;郁崇文. 棉纤维长度分布密度函数的非参数核估计[J]. 纺织学报, 2008, 29(11): 22-25.
[11] 孙鹏子;张明光;王兰. 梳针分梳板对纤维长度分布的影响[J]. 纺织学报, 2008, 29(11): 39-43.
[12] 高晓丁;高滨;左贺;辛文辉. 基于支撑矢量机的织物疵点识别算法[J]. 纺织学报, 2006, 27(5): 26-28.
[13] 孙鹏子;王兰;张志丹;张明光. 梳棉机刺辊落棉和盖板花纤维长度分布[J]. 纺织学报, 2006, 27(5): 80-83.
[14] 王兰;孙鹏子;张明光. 给棉板与刺辊隔距对纤维长度分布的影响[J]. 纺织学报, 2006, 27(4): 70-73.
[15] 高晓丁;汪成龙;左贺;梁继超. 基于直方图统计的织物疵点识别算法[J]. 纺织学报, 2005, 26(2): 121-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!