纺织学报 ›› 2017, Vol. 38 ›› Issue (10): 124-131.doi: 10.13475/j.fzxb.20161204308

• 管理与信息化 • 上一篇    下一篇

纹理织物疵点窗口跳步形态学法检测

  

  • 收稿日期:2016-12-26 修回日期:2017-05-11 出版日期:2017-10-15 发布日期:2017-10-16

Textured fabric detect detection based on windowed hop-step morphological algorithm

  • Received:2016-12-26 Revised:2017-05-11 Online:2017-10-15 Published:2017-10-16

摘要:

针对纹理织物疵点自动检测时因生产速度快造成的织物抖动以及检测速度难以匹配问题,提出窗口跳步形态学法纹理织物疵点检测算法。使用该算法对图像进行窗口分割及预处理后,首先对纹理织物图像的纹理特征进行分析,然后设计形态学算子进行腐蚀操作,最后使用连通域分析来确定疵点大小及位置。仿真实验及工厂实际应用表明,该算法可有效克服工业生产中纹理织物抖动造成的图像明暗不均,可检测出纹理织物中存在的破洞、经纬疵点、污渍、断线、折痕和结头等各种疵点,而且检测速度明显优于快速傅里叶变换特征点算法以及传统形态学检测算法。实时检测速度超过80 m/min,疵点检测精度为0.1 mm,满足实际生产需求。

关键词: 纹理织物, 形态学, 跳步法, 疵点检测

Abstract:

Aim at the problem of low detection efficiency and fabric jittering due to high production rate, when texture fabric defects are automatically detected. A textured fabric defect detection was presented based on a windowed hop-step morphological algorithm. Firstly, window sugnebtatuib and preprocessing on images were carried out, and then the image textuer features of the textured fabric were analyzed. Secondly morphological operators were designed for corrosion operation. Finally, the defect size and location are determined by connected domain analysis. Experimental simulation and practical application show that this algorithm can solve the problem of the images of uneven light and shade caused by the cloth trembling effectively, and the algorithm can detect the presence of detect in the fabric texture including warp and weft defects, holes, stains, thread defects and other defects. The detection algorithm has high stability and reliability so that can meet the actual production demand. The detection speed is superior to the speed of FFT feature point algorithm and traditional morphological algorithm. The real-time detection speed is more than 80m/min, and the size of the flaw detection accuracy is 0.1mm.

Key words: textured fabric, morphological, hop-step algorithm, defec detection

[1] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[2] 张波 汤春明. 基于相对总变差模型与自适应形态学的织物瑕疵检测[J]. 纺织学报, 2017, 38(05): 145-149.
[3] 王传桐 胡峰 徐启永 吴雨川 余联庆. 采用Gabor滤波簇和等距映射算法的织物疵点检测方法[J]. 纺织学报, 2017, 38(03): 162-167.
[4] 李春雷 高广帅 刘洲峰 刘秋丽 李文羽. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017, 38(03): 149-154.
[5] 李敏 崔树芹 陈佳. 应用视觉显著性的小提花织物疵点检测[J]. 纺织学报, 2016, 37(12): 38-42.
[6] 尉苗苗 李岳阳 蒋高明 丛洪莲. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016, 37(11): 48-54.
[7] 石美红 张正 郭仙草 陈永当. 基于显著纹理特征的织物疵点检测方法[J]. 纺织学报, 2016, 37(10): 42-049.
[8] 厉征鑫 周建 潘如如 刘建立 高卫东. 应用单演小波分析的织物疵点检测[J]. 纺织学报, 2016, 37(09): 59-64.
[9] 景军锋 范晓婷 李鹏飞 张蕾 张宏伟. 应用Gaussian回代交替方向图像分解算法的色织物疵点检测[J]. 纺织学报, 2016, 37(06): 136-141.
[10] 刘洲峰 闫磊 李春雷 董燕 李阳. 基于稀疏优化的织物疵点检测算法[J]. 纺织学报, 2016, 37(05): 56-0.
[11] 景军锋 李江南 李鹏飞. 改进型奇异值分解在织物疵点检测上的应用[J]. 纺织学报, 2014, 35(6): 62-0.
[12] 管声启 高照元 吴宁 徐帅华. 基于视觉显著性的平纹织物疵点检测[J]. 纺织学报, 2014, 35(4): 56-0.
[13] 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4): 137-142.
[14] 牛存才 汪军 张孝南 李立轻 陈霞 童骁. 基于遗传规划的织物自适应正交小波基的构造和优化[J]. 纺织学报, 2012, 33(9): 40-46.
[15] 朱俊岭, 汪军, 张孝南, 李立轻, 陈霞, 庞明军. 基于AR模型的机织物线状疵点研究[J]. 纺织学报, 2012, 33(8): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!