纺织学报 ›› 2017, Vol. 38 ›› Issue (06): 157-162.doi: 10.13475/j.fzxb.20170202906

• 纺织科技新见解学术沙龙专栏 • 上一篇    下一篇

应用电子束辐射技术的抗菌改性聚酯纳米纤维膜

  

  • 收稿日期:2017-02-22 修回日期:2017-03-02 出版日期:2017-06-15 发布日期:2017-06-16

Antibacterial modification of polyester nanofibrous membranes by electron beam irradiation technique

  • Received:2017-02-22 Revised:2017-03-02 Online:2017-06-15 Published:2017-06-16

摘要:

为制备一种高效抗菌生物材料,以生物可降解材料聚(3?羟基丁酸酯?co?4?羟基丁酸酯) (P(3HB?4HB))和聚己二酸/对苯二甲酸丁二酯(PBAT)为基材,合成了一种新型含有季铵基团的卤胺抗菌剂单体;采用静电纺丝技术制备出P(3HB-4HB)/PBAT纳米纤维膜;利用电子束辐射技术将合成的单体接枝共聚到纳米纤维膜,最后经次氯酸钠氯化得到抗菌纤维膜。探讨了P(3HB?4HB)、PBAT组成对纤维膜表面形貌的影响,以及辐射量、单体浓度对纤维膜含氯量的影响,同时分析了抗菌纤维膜的耐紫外稳定性、储存稳定性。结果表明:P(3HB?4HB)/PBAT抗菌纳米纤维膜在5min内即可将金黄色葡萄球菌和大肠杆菌全部杀死,显示出优异的抗菌性能,实现了卤胺抗菌剂和化学惰性材料的共价键合作用,有望应用于食品包装、生物医学等领域。

关键词: 生物可降解, 电子束辐射, 卤胺化合物, 季铵盐, 抗菌性

Abstract:

In order to perpare an efficient antibacterial biomaterials, an innovative N-halamine monomer contatining quaternary ammonium group was synthesized and grafted onto the poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-4HB)) and poly(butylene adipate-co-terephthalate) (PBAT) nanofiberus membranes that were generated by electrospinning, and finally the grafted nanofibrous membranes were chloridized with sodium hypochlorite to obtain antibacterial nanofibrous membranes. The influence of the composition of P(3HB-4HB) and PBAT on surface morphologies of membranes and the influence of the irradiation dose and the concentration of monomer on the oxidative chlorine were studied. The UV light stability and the storage stability of the antibacterial nanofibrous membranes were also investigated. The results show that the P(3HB-4HB) / PBAT antibacterial nanofibrous membranes can kill both S. aureus and E. coli within 5 min, showing powerful antibacterial performance, realize the covalent bonding effect between N-halamine antibacterials and chemical inert materials, and have great potential in fields of food packaging and biomedicines. 

Key words: biodegradable, edectron beam, N-halamine, quaternary ammonium salt, antibacteria

[1] RHIM J W, PARK H M, HA C S. Bio-nanocomposites for food packaging applications[J]. Progress in Polymer Science, 2013, 38 (10-11): 1629-1652. [2] LI R, HU P, REN X, et al. Antimicrobial N-halamine modified chitosan films[J]. Carbohydrate Polymers, 2013, 92 (1): 534-539. [3] ZHAN J, WANG L, LIU S, et al. Antimicrobial hyaluronic acid/poly(amidoamine) dendrimer multi layer on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) prepared by a layer-by-layer self-assembly method[J]. ACS Applied Materials & Interfaces, 2015, 7 (25): 13876-13881. [4] KOCER H B, CERKEZ I, WORLEY S D, et al. Cellulose/starch/HALS composite fibers extruded from an ionic liquid[J]. Carbohydrate Polymers, 2011, 86 (2): 922-927. [5] WANG D, XU W, SUN G, et al. Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes, ACS Applied Materials & Interfaces[J]., 2011, 3 (8): 2838-2844. [6] ZHU J, BAHRAMIAN Q, GIBSON P, et al. Chemical and biological decontamination functions of nanofibrous membranes[J]. Journal of Materials Chemistry, 2012, 22 (17): 8532-8540. [7] SUN X, ZHANG L, CAO Z, et al. Electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents as an innovative type of polymeric materials with superior antimicrobial efficacy[J]. ACS Applied Materials & Interfaces, 2010, 2 (4): 952-956. [8] CHEN Z, CHENG S, XU K. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate) [J]. Biomaterials, 2009, 30 (12): 2219-2230. [9] WENG Y X, WANG L, ZHANG M, et al. Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments[J]. Polymer Testing, 2013, 32 (1): 60-70. [10] JAVADI A, KRAMSCHUSTER A J, PILLA S, et al. Processing and characterization of microcellular PHBV/PBAT blends[J]. Polymer Engineering and Science, 2010, 50 (7): 1440. [11] SIEGENTHALER K, KüNKEL A, SKUPIN G, et al. Synthetic Biodegradable Polymers[M]. Springer Berlin Heidelberg, 2011: 91-136. [12] JAVADI A, SRITHEP Y, LEE J, et al. Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41 (8): 982-990. [13] El-NAGGAR A W M., ZOHDY M H, SAID H M, et al. Pigment colors printing on cotton fabrics by surface coating induced by electron beam and thermal curing[J]. Applied Surface Science, 2005, 241 (3-4): 420-430. [14] LI X, LIU Y, JIANG Z, et al. Synthesis of an N-halamine monomer and its application in antimicrobial cellulose via an electron beam irradiation process[J]. Cellulose, 2015, 22 (6): 3609-3617. [15] VASILJEVA I, MJAKIN S, MAKAROV A, et al. Electron beam induced modification of poly (ethylene terephthalate) films[J]. Applied Surface Science, 2006, 252 (24): 8768-8775. [16] DRISCOLL M, STIPANOVIC A, WINTER W, et al. Electron beam irradiation of cellulose[J]. Radiation Physics and Chemistry, 2009, 78 (7-8): 539-542. [17] DIETRICH J, HIRT P, HERLINGER H. Electron-beam-induced cyclisation to obtain C-fibre precursors from polyacrylonitrile homopolymers[J]. European Polymer Journal, 1996, 32 (5): 617-623. [18] WANG B, TAI Q, NIE S, et al. Electron beam irradiation cross linking of halogen-free flame-retardant ethylene vinyl acetate (EVA) copolymer by silica gel microencapsulated ammonium polyphosphate and char-forming agent[J]. Industrial & Engineering Chemistry Research, 2011, 50 (9): 5596-5605. [19] TAN L C, MAJI S, MATTHEIS C, et al. Antimicrobial hydantoin-containing polyesters[J]. Macromolecular Bioscience, 2012, 12 (8): 1068-1076. [20] WU L, XU Y, CAI L, et al. Synthesis of a novel multi N-halamines siloxane precursor and its antimicrobial activity on cotton[J]., Applied Surface Science, 2014, 314 (24): 832-840. [21] KOCER H B, CERKEZ I, WORLEY S, et al. N-halamine copolymers for use in antimicrobial paints[J]. ACS Applied Materials & Interfaces, 2011, 3 (8): 3189-3194. [22] DONG A, SUN Y, LAN S, et al. Barbituric acid-based magnetic N-halamine nanoparticles as recyclable antibacterial agents[J]. ACS Applied Materials & Interfaces, 2013, 5 (16): 8125-8133. [23] DONG A, ZHANG Q, WANG T, et al. Immobilization of cyclic N-Halamine on polystyrene-functionalized silica nanoparticles: synthesis, characterization, and biocidal activity[J]., Journal of Physical Chemistry C, 2010, 114 (41): 17298-17303. [24] REN X, KOU L, KOCER H B, et al. Antimicrobial modification of polyester by admicellar polymerization[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89 (2): 475-480.

[1] 高世会 郁崇文. 罗布麻中黄酮的超临界CO2萃取及其抗菌性[J]. 纺织学报, 2018, 39(08): 71-76.
[2] 陈永邦 黄成 阎克路 叶敬平. 导湿排汗涤纶针织物的抗菌亲水整理[J]. 纺织学报, 2018, 39(05): 74-79.
[3] 姚萍 江文 王江 黄金洪 周小华. 接枝壳寡糖抗菌粘胶纤维的制备及其抗菌性与染色效果[J]. 纺织学报, 2018, 39(04): 9-13.
[4] 任燕飞 巩继贤 付冉冉 张健飞 王富邦 陶宇庆. 微生物合成纳米灵菌红素及其对羊毛织物抗菌染色[J]. 纺织学报, 2018, 39(02): 91-96.
[5] 潘力 曹立瑶 牛梅红 . 丝瓜络纤维非织造布的制备及其性能[J]. 纺织学报, 2017, 38(08): 22-27.
[6] 郭晓玲 张彤 曹陈华 王向东 符荣. 负载掺杂纳米TiO2耐久抗菌织物的制备与表征[J]. 纺织学报, 2017, 38(06): 163-168.
[7] 王遥 朱青 胡春艳 王栋 阎克路. 改性聚乙烯醇-乙烯共聚物纳米纤维膜对重金属离子的吸附性能[J]. 纺织学报, 2017, 38(06): 11-16.
[8] 余改丽 张弘楠 张娇娇 左晓飞 覃小红. 高效低阻聚丙烯腈/石墨烯纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2017, 38(02): 26-33.
[9] 么丹阳 巫晓华 毛雪峰 周邓飞 蒋佳莉 王秀华. 银纳米颗粒/二氧化钛/醋酸纤维素复合纤维的制备及其性能[J]. 纺织学报, 2016, 37(4): 15-0.
[10] 何雪梅 杜梅 沈雪柏. 壳聚糖季铵盐/硅杂化膜对棉纤维的表面修饰[J]. 纺织学报, 2016, 37(2): 97-0.
[11] 任燕飞 巩继贤 张健飞 付冉冉 王富邦. 茶色素染液pH值对羊毛织物染色效果及抗菌性能的影响[J]. 纺织学报, 2016, 37(11): 86-91.
[12] 金恩琪 李曼丽 张玲玲. 脂肪族单体结构对水溶性聚酯浆纱性能的影响[J]. 纺织学报, 2016, 37(06): 66-71.
[13] 孔令杰 高晓红 贾雪平. 纳米银负载对棉织物活性染料染色的影响[J]. 纺织学报, 2015, 36(07): 61-0.
[14] 甄莉莉 付小蓉 程坚 黄丹 . 经壳聚糖季铵盐整理的羊毛织物酸性染料染色性能[J]. 纺织学报, 2014, 35(8): 59-0.
[15] 路艳华 卢声 于志财. 青黛与姜黄对柞蚕丝织物的套染[J]. 纺织学报, 2013, 34(9): 73-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!