纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 97-102.doi: 10.13475/j.fzxb.20170203106

• 染整与化学品 • 上一篇    下一篇

磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能

叶伟1,2, 孙雷2, 余进1,2, 孙启龙1,2()   

  1. 1.南通大学 安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
    2.南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2018-02-11 修回日期:2018-09-28 出版日期:2019-01-15 发布日期:2019-01-18
  • 通讯作者: 孙启龙
  • 作者简介:叶伟(1984—),男,讲师,硕士。研究方向为安全与防护用纺织品。

Preparation and microwave absorption property of flexible lightweight magnetic particles-carbon fiber composites

YE Wei1,2, SUN Lei2, YU Jin1,2, SUN Qilong1,2()   

  1. 1. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, Jiangsu 226019, China
    2. College of Textiles and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2018-02-11 Revised:2018-09-28 Online:2019-01-15 Published:2019-01-18
  • Contact: SUN Qilong

摘要:

为开发兼具电损耗和磁损耗的新型轻质柔软吸波复合材料,采用聚丙烯腈(PAN)基预氧丝毡浸渍金属盐溶液,经高温处理工艺制备了磁性颗粒/碳纤维轻质柔软复合材料。通过弓形法吸波测试、X射线衍射、X射线能谱分析、扫描电子显微镜观察等方法对材料性能进行表征和分析。结果表明:所制备的复合材料由碳纤维和具有磁损耗性能的Fe—Co—Ni、Fe3O4、Fe—Ni、Fe—Co等颗粒组成,磁性颗粒沿着纤维轴向均匀分布,电损耗与磁损耗间的协同作用使磁性颗粒/碳纤维复合材料表现出优异的吸波性能。当处理温度为650 ℃和700 ℃时,试样电磁波发射损耗小于-5 dB的吸收波段分别为8.6~18 GHz和10~18 GHz,电磁波反射损耗小于-10 dB的吸收波段分别为13.9~18 GHz和14~18 GHz。结果表明,过高或过低的处理温度会降低材料电磁波损耗,通过调节处理温度可控制材料的吸波性能。

关键词: 复合材料, 碳纤维, 金属盐, 磁性颗粒, 吸波性能

Abstract:

For developing novel flexible lightweight composite materials having both dielectric loss and magnetic loss abilities, magnetic particles-carbon fiber composites were prepared by impregnating polyacrylonitrile (PAN) based preoxidative fiber felts with metal salt solution and high temperature carbonizing. As-prepared materials were characterized and analyzed by segmental support based adsorption, X-ray diffraction, energy dispersive spectrometry, and scanning electron microscopy. Results show that the prepared composite material was composed of carbon fibers and magnetic Fe-Co-Ni, Fe3O4, Fe-Ni, Fe-Co and so on. The magnetic particles are uniformly distributed along the fiber axis. With the synergistic effects of dielectric loss of magnetic particles and magnetic loss of carbon fibers, such carbon fiber composite materials exhibites excellent microwave absorption property. When the treatment temperature is 650 ℃ and 700 ℃, the absorption bands of electromagnetic wave loss lower than -5 dB are 8.6-18 GHz and 10-18 GHz, respectively, while the absorption frequency are 13.9-18 GHz and 14-18 GHz for those of electromagnetic loss lower than -10 dB. In addtion, the treatment temperature higher than 700 ℃ or lower than 650 ℃ will decrease the adsorption of electromagnetic waves. The microwave absorption property of magnetic particle-carbon fiber composites can controlled by adjusting the treatment temperature.

Key words: composite, carbon fiber, metal salt, magnetic particle, wave absorption property

中图分类号: 

  • TB333

图1

弓形架吸波测试仪 1—网络分析仪; 2—发射天线; 3—接收天线; 4—样品台;5—吸波尖劈; 6—同轴电缆线; 7—弓形架。"

图2

试样的XRD图谱"

图3

700 ℃高温处理后纤维表面的EDS分析图谱 (a) Unimpregnated metal salt solution; (b) Impregnated with metal salt solution"

图4

经过不同温度处理后试样的SEM照片和磁性能(×500) (a) 550 ℃; (b) 600 ℃; (c) 650 ℃; (d) 700 ℃; (e) 750 ℃; (f) Magnetic performance (700 ℃)"

图5

经过不同温度处理后试样的电磁参数"

图6

试样在不同雷达波段下反射损耗曲线图"

图7

试样的电磁波反射损耗模型"

[1] 叶芹, 向军, 李佳乐, 等. NZFO-PZT磁电复合纳米纤维的制备及其吸波性能[J]. 无机化学学报, 2015,31(7):1296-1304.
YE Qin, XIANG Jun, LI Jiale, et al. Fabrication and microwave absorption properties of NZFO-PZT magnetoelectric composite nanofibers[J]. Chinese Journal of Inorganic Chemistry, 2015,31(7):1296-1304
[2] QIN F, BROSSEAU C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J]. Journal of Applied Physics, 2012,111(6):061301.
doi: 10.1063/1.3688435
[3] 李晶晶, 田启祥, 邹南智, 等. 结构型碳纤维吸波复合材料的研究及应用[J]. 纤维复合材料, 2012(2):7-10.
LI Jingjing, TIAN Qixiang, ZOU Nanzhi, et al. Research and application development of carbon fiber reinforced structural microwave-absorbing composite material[J]. Fiber Composites, 2012(2):7-10.
[4] FOLGUERAS L C, NOHARA E L, FEA R, et al. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with poly-aniline[J]. Materials Research, 2007,10(1):95-99
doi: 10.1590/S1516-14392007000100020
[5] LIU Z, TAO R, LUO P, et al. Preparation and microwave absorbing property of carbon fiber/polyurethane radar absorbing coating[J]. Rsc Advances, 2017,7(73):46060-46068.
doi: 10.1039/C7RA07666E
[6] OSOULIBOSTANABAD K, AGHAJAN H, HOSSEINZADE E, et al. High microwave absorption of Nano-FeO deposited electrophoretically on carbon fiber[J]. Materials and Manufacturing Processes, 31(1):1351-1356.
doi: 10.1080/10426914.2015.1090595
[7] 王晨, 康飞宇, 顾家琳. 铁钴镍合金粒子/石墨薄片复合材料的制备与吸波性能研究[J]. 无机材料学报, 2010,25(4):406-410.
WANG Chen, KANG Feiyu, GU Jialin. Synjournal and microwave absorbing properties of FeCoNi alloy particles/graphite flaky composites[J]. Journal of Inorganic Materials, 2010,25(4):406-410.
doi: 10.3724/SP.J.1077.2010.00406
[8] 吴爱兵. 碳包覆磁性纳米颗粒的合成、结构及磁性能研究[D]. 长春: 吉林大学, 2011: 92-97.
WU Aibing. Synthesis, structure and mangetic property studies of catbom-encapsulated magnetic nano-particles[D]. Changchun: Jilin University, 2011: 92-97.
[9] 曾国勋, 张海燕, 葛鹰, 等. FeCoNi合金超细粉体的制备及其微波性能研究[J]. 表面技术, 2010,39(3):1-5.
ZENG Guoxun, ZHANG Haiyan, GE Ying, et al. Fabrication and absorption of FeCoNi alloy fine powders[J]. Surface Technology, 2010,39(3):1-5.
[10] 邹建平. 磁性四氧化三铁纳米复合材料的制备及其微波吸收应用研究[D]. 合肥: 安徽大学, 2014: 27-28.
ZHOU Jianping. Preparation and microwave absorption property of magnetic Fe3O4 nanocomposites[D]. Hefei: Anhui University, 2014: 27-28.
[11] LIU Z, XU G, ZHANG M, et al. Synjournal of CoFe2O4/RGO nanocomposites by click chemistry and electromagnetic wave absorption properties[J]. J Mater Sci Mater Electron, 2016,27(9):9278-9285.
doi: 10.1007/s10854-016-4966-7
[12] LI Z T, YE M Q, HAN A J, et al. Preparation, characterization and microwave absorption properties of NiFe2O4, and its composites with conductive polymer[J]. J Mater Sci Mater Electron, 2016,27(1):1031-1043.
doi: 10.1007/s10854-015-3848-8
[13] 吴友朋, 刘祥萱, 周友杰, 等. 吸收剂颗粒尺寸对吸波材料性能的影响[J]. 宇航材料工艺, 2010,40(1):42-44.
WU Youpeng, LIU Xiangxuan, ZHOU Youjie, et al. Effects of inclusion-particle size on absorbing ability of microwave absorbing materials[J]. Aerospace Materials & Technology, 2010,40(1):42-44.
[14] 张晏清, 张雄. 钡铁氧体的颗粒粒径与吸波性能研究[J]. 同济大学学报(自然科学版), 2006,34(2):225-228.
ZHANG Yanqing, ZHANG Xiong. Effect of particle size on microwave absorption property of barium ferrite[J]. Journal of Tongji University(Natural Science Edition), 2006,34(2):225-228.
[15] DOSOUDIL R, USAKOVA M, FRANEK J, et al. Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites[J]. IEEE Transactions on Magnetics Magr, 2010,46(2):436-439.
[16] HAN Z, LI D, WANG H, et al. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules[J]. Appl Phys Lett, 2009,95:023114
doi: 10.1063/1.3177067
[17] LU M M, CAO W Q, SHI H L, et al. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synjournal and highly efficient microwave absorption properties at elevated temperature[J]. J Mater Chem A, 2014,2(27):10540-10547.
doi: 10.1039/c4ta01715c
[18] CAO M S, QIN R R, QIU C J, et al. Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate[J]. Mater Design, 2003,24(5):391-396.
doi: 10.1016/S0261-3069(02)00119-X
[19] WANGL, HE F, WAN Y. Facile synjournal and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe-Co alloy by electro-plating[J]. Journal of Alloys and Compounds, 2011,509(14):4726-4730.
doi: 10.1016/j.jallcom.2011.01.119
[20] LI J, BI S, MEI B, et al. Effects of three-dimensional reduced graphene oxide coupled with nickel nanoparticles on the microwave absorption of carbon fiberbased composites[J]. Journal of Alloys and Compounds, 2017,717:205-213.
doi: 10.1016/j.jallcom.2017.03.098
[21] TEKMEN C, TSUNEKAWA Y, NAKANISHI H. Electrospinning of carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles[J]. Journal of Materials Processing Technology, 2010,210(3):451-455.
doi: 10.1016/j.jmatprotec.2009.10.006
[1] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
[2] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[3] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[4] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[5] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[6] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
[7] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[8] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[9] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[10] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[11] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
[12] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[13] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[14] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[15] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!