纺织学报 ›› 2018, Vol. 39 ›› Issue (08): 144-149.doi: 10.13475/j.fzxb.20170705406

• 管理与信息化 • 上一篇    下一篇

应用图像处理的纱线黑板毛羽量检测与评价

  

  • 收稿日期:2017-07-14 修回日期:2018-05-15 出版日期:2018-08-15 发布日期:2018-08-13

Detection and evaluation on yarn hairiness of blackboard with image processing

  • Received:2017-07-14 Revised:2018-05-15 Online:2018-08-15 Published:2018-08-13

摘要:

针对目测法检测纱线黑板毛羽效率低、主观性强等问题,提出一种新的基于图像处理的毛羽检测方法。纱线黑板经扫描仪采集图像,然后进行中值滤波、二值化、形态学运算、局部阈值等处理,得到黑板毛羽图像,统计出毛羽像素点个数,提出评价黑板毛羽量的指标——M指数。采用原料、线密度和纺纱方式各不相同的纱线进行实验,测得18种纱线的毛羽M指数,与乌斯特仪得到的毛羽H值建立回归模型,两种测试结果之间的相关系数为0.975。6种纱线的验证结果表明,本文提出的毛羽检测法和建立的毛羽M指数能较完整地提取和评价整块纱线黑板毛羽,算法精度高、评定结果可信度好。

关键词: 纱线黑板, 毛羽, 图像处理, 局部阈值

Abstract:

Aiming at the low efficiency and subjectivity of the visual observation of yarn hairiness of blackboard, a new hairiness detection method based on image processing was proposed. Image was acquired by the scanner. Then, the image was processed by median filtering, binaryzation, morphological operation and local threshold to obtain the blackboard hairiness images, and the number of hairy fiber pixels were counted. In addition, M Index was proposed to evaluate yarn hairiness on blackboard. The experiments were carried out by using different types of yarn material, yarn density and spinning system. The hairiness M Index of 18 kinds of yarns were measured. The regression model was established with the H value tested by a Uster tester, and the correlation coefficient between them is 0.975.The verification results of six kinds of yarn samples show that the hairiness detection method proposed in this paper can be used to extract the whole blackboard yarn hairiness relatively completely, and the M Index can assess the quality of blackboard yarn hairiness, with high algorithm accuracy and good reliability.

Key words: yarn blackboard, hairiness, image processing, local threshold

[1] 于伟东. 纺织材料学 [M]. 北京:中国纺织出版社, 2006:218-220. YU Weidong. Material of Textile [M]. Beijng: China Textile & Apparel Press, 2006:218-220.
[2] 方珩,辛斌杰,刘晓霞,等.一种新型纱线毛羽图像特征识别算法的研究[J].河北科技大学学报, 2015, 36(1):63-72. FANG Heng, XIN Binjie, LIU Xiaoxia. Research of a novel method for measuring yarn hairiness based on image recognition[J]. Journal of Hebei University of Science and Technology, 2015, 36(1): 63-72.
[3] OZKAVA Yasar A, ACAR M, JACKSON Mike R. Digital image processing and illumination techniques for yarn characterization [J]. Journal of Electronic Imaging, 2005, 14(2):023001.1 - 023001.13.
[4] 张继蕾.基于图像处理技术的纱线毛羽检测应用研究[D]. 河北科技大学, 2011. ZHANG Jilei. Application Study on the Yarn Hairiness Detection based on Image Processing Technology[D]. Hebei University of Science and Technology, 2011.
[5] FABIJANSKA Anna, JACKOWSKA STRUMILLO Lidia. Image processing and analysis algorithms for yarn hairiness determination[J]. Machine Vision and Applications, 2012, 23(3):527-540.
[6] 孙银银,潘如如,高卫东.基于数字图像处理的纱线毛羽检测[J].纺织学报, 2013, 34(6):102-106. SUN Yinyin, PAN Ruru, GAO Weidong. Detection of yarn hairiness based on digital image processing[J]. Journal of Textile Research, 2013, 34(6): 102-106.
[7] WANG Lei, XU Bugao, GAO Weidong. Multi-perspective measurement of yarn hairiness using mirrored images[J/OL]. Textile Research Journal, 2016, 0(00),DOI:10.1177/0040517516685281.
[8] 梁宏伟. 纱线毛羽降低方法及图像技术检测研究[D]. 河北科技大学, 2011. LIANG Hongwei. Study of method of reducing and Image technology detection yarn hairiness[D]. Hebei University of Science and Technology, 2011.
[9] 黄河,李庆武,范习健. 采用局部动态阈值的图像分割算法[J]. 光电子技术, 2011, 31(1):10-13. HANG He, LI Qingwu, FAN Xijian. Adaptive Local Threshold Image Segmentation Algorithm[J]. Optoelectronic Technology, 2011, 31(1):10-13.
[10] OTSU N. A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1):62-66.
[11] 毛萃萃, 棉型纱线乌斯特毛羽值与毛羽根数间的相关分析[D].西安工程大学, 2012. MAO Cuicui. Correlation Analysis between Uster Hairiness Index and the Number of Hairs about Cotton-type Yarn[D]. Xi’an Polytechnic University, 2012.
[1] 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141.
[2] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
[3] 李沛赢 郭明瑞 高卫东. 应用给湿装置改善环锭纺成纱毛羽[J]. 纺织学报, 2018, 39(05): 108-112.
[4] 张灵婕 缪旭红 万爱兰 蒋高明 陈方芳. 上浆前处理剂对经编用棉纱性能的影响[J]. 纺织学报, 2018, 39(04): 82-86.
[5] 王雯雯 刘基宏. 应用优化霍夫变换的细纱断头检测[J]. 纺织学报, 2018, 39(04): 36-41.
[6] 晏江 邱华 李永贵. 旋流喷嘴对不同线密度纱线的作用机制[J]. 纺织学报, 2018, 39(03): 38-44.
[7] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[8] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[9] 高娜 李强 徐伯俊 刘新金 王广斌. 不同引纱方法对云纹纱成纱外观及质量的影响[J]. 纺织学报, 2017, 38(12): 43-48.
[10] 晏江 邱华. 环锭旋流喷嘴纺麻混纺纱的性能[J]. 纺织学报, 2017, 38(10): 19-24.
[11] 王晓予 向军 潘如如 梁惠娥 高卫东. 服饰刺绣图案的自动提取与色块分割[J]. 纺织学报, 2017, 38(09): 120-126.
[12] 孙银银 张宁 吴洋 潘如如 高卫东. 纱线毛羽骨架及长度的跟踪测量[J]. 纺织学报, 2017, 38(08): 32-38.
[13] 张继东 薛元 张杰 郭明瑞 魏晓婷 高卫东 . 应用混色纱纹理信息的纬编针织物模拟[J]. 纺织学报, 2017, 38(07): 148-154.
[14] 路凯 钟跃崎 朱俊平 柴新玉. 基于视觉词袋模型的羊绒与羊毛快速鉴别方法[J]. 纺织学报, 2017, 38(07): 130-134.
[15] 张宁 李忠健 潘如如 高卫东 韩要宾. 采用色纺纱图像的真实感色织物模拟[J]. 纺织学报, 2017, 38(05): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖慧芳 阎克路 纪柏林. 糖类添加剂在1,2,3,4-丁烷四羧酸棉织物防皱整理中的应用[J]. 纺织学报, 2018, 39(07): 89 -94 .
[2] 王航 庄旭品 董锋 石磊 康卫民 徐先林 程博闻. 溶液喷射纺纳米纤维制备技术及其应用进展[J]. 纺织学报, 2018, 39(07): 165 -173 .
[3] 高广明 朱江晖 许丽慧 孙莉 谷芬芬. C2C环境下服装零售感知服务质量综合评价模型[J]. 纺织学报, 2018, 39(08): 164 -170 .
[4] 蔡丽玲 季晓芬 庞琛. 服装在线评论有用性的影响因素[J]. 纺织学报, 2018, 39(08): 158 -163 .
[5] 汪珊娜 张华熊 康锋. 基于卷积神经网络的领带花型情感分类[J]. 纺织学报, 2018, 39(08): 117 -123 .
[6] 徐洋 盛晓伟 李昂昂 钱如峰 孙志军. 基于经验模态分解和离散小波能量特征的地毯织机噪声源识别[J]. 纺织学报, 2018, 39(08): 138 -143 .
[7] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124 -129 .
[8] 贾小军 邓海涛 滕姿 曾丹. 应用轮廓线拟合提取蓝印花布图案基元[J]. 纺织学报, 2018, 39(08): 150 -157 .
[9] 张文欢 钱晓明 范金土 师云龙 牛丽. 人体出汗率分布的研究进展[J]. 纺织学报, 2018, 39(08): 179 -184 .
[10] 史玉媛 申鸿 魏振乾. 腰省量分配对无袖修身旗袍造型的影响[J]. 纺织学报, 2018, 39(08): 105 -109 .