纺织学报 ›› 2018, Vol. 39 ›› Issue (05): 56-61.doi: 10.13475/j.fzxb.20170802206

• 纺织工程 • 上一篇    下一篇

梯度结构双组分纺粘水刺非织造材料的制备及其性能

  

  • 收稿日期:2017-08-09 修回日期:2018-02-02 出版日期:2018-05-15 发布日期:2018-05-10

Preparation and properties of bicomponent spunbond-spunlance nonwoven materials with gradient structure

  • Received:2017-08-09 Revised:2018-02-02 Online:2018-05-15 Published:2018-05-10

摘要:

为探究梯度结构对超细纤维非织造材料性能的影响,通过双组分纺粘技术和不同水针压力作用下的水刺开纤技术,用一步法制备了不同面密度(80、120、160 g/m2 )的梯度结构双组分纺粘水刺非织造材料,并分析了水针压力对结构和透气透湿、力学、过滤性能的影响。结果表明:当面密度一定时,随着水针压力从15 MPa 的增大到28 MPa,双组分纺粘水刺非织造材料的厚度减小,平均孔径减小,透气透湿性能下降;纵/横向断裂强力先增加后减小,断裂伸长率先减小后增加;过滤效率和过滤阻力均增加,其中当面密度为80 g/m2 ,水针压力为11MPa 时,过滤效率(0.85 μm 粒径)和过滤阻力分别达到66.8%和25.1 Pa。

关键词: 超细纤维, 梯度结构, 纺粘水刺, 非织造材料

Abstract:

In order to study the influence of gradient structure on the properties of microfiber nonwoven materials, bicomponent spunbond-spunlance nonwoven materials with different weight (80, 120, 160 g/m2) were prepared by bicomponent spunbond technology and spunlace technology under different hydroentangling pressure. The influences of hydroentangling pressure on air permeability, water vapor permeability, mechanical properties and filtration performance were investigated. The results showed that the thickness, mean pore size, air permeability and water vapor permeability decreased with increase hydroentangling pressure of from 15 MPa to 28 MPa at the same weight. The tensile strength increased with the increase of hydroentangling pressure and then decreased, and the elongation at break was in opposite trend. The filtration efficiency and filtration resistance increased with the increase of hydroentangling pressure. When the weight is 80 g/m2 and hydroentangling pressure is 22 MPa, the filtration efficiency (paticle size with 0.85 μm ) and filtration resistance were 66.8% and 25.1 Pa, respectively.

Key words: microfiber, gradient structure, spunbond-spunlance, splitting, nonwoven material

参考文献
[1] BHARDWAJ N, KUNDU S C. Electrospinning: A fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3): 325-347.
[2] ELLISION C J, PHATAK A, GILES D W, et al. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup[J]. Polymer, 2007, 48(20): 3306-3316.
[3] XIA L, XI P, CHENG B. High efficiency fabrication of ultrahigh molecular weight polyethylene submicron filaments/sheets by flash-spinning[J]. Journal of Polymer Engineering, 2016, 36(1): 97-102.
[4] ZHANG Z, TU W, PEIJS T, et al. Fabrication and properties of poly(tetrafluoroethylene) nanofibres via sea-island spinning[J]. Polymer, 2017, 109: 321-331.
[5] ZHANG H, QIAN X M, ZHEN Q, et al. Research on structure characteristics and filtration performances of PET-PA6 hollow segmented-pie bicomponent spunbond nonwovens fibrillated by hydro entangle method[J]. Journal of Industrial Textiles. 201, 45(1): 48-65.
[6] ZHANG H, QIAN X M, ZHEN Q. Study on the Pore Size Distribution of the Bicomponent Spunbond Nonwoven Geotextiles[J]. Materials Science Forum. 2016, 852: 1404-1408.
[7] 王敏,韩建,于斌,等. 双组分橘瓣型纺粘水刺材料的过滤和力学性能[J]. 纺织学报, 2016, 37(09): 16-20.
WANG Min, HAN Jian, YU bin, et al. Filtration and mechanical performance of orange petal shape bicomponent spunbond-spunlace nonwoven materials [J]. Journal of Textile Research, 2016, 37(09): 16-20.
[8] HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B. Hybrid mixed media nonwovens composed of macrofibers and microfibers. Part I: three-layer segmented pie configuration[J]. Journal of the Textile Institute, 2013, 104(9): 972-979.
[9] NAEBE M, SHIRVANIMOGHADDAM K. Functionally graded materials: A review of fabrication and properties[J]. Applied Materials Today, 2016, 5: 223-245.
[10] GUPTA A, TALHA M. Recent development in modeling and analysis of functionally graded materials and structures[J]. Progress in Aerospace Sciences, 2015, 79: 1-14.
[11] WANG Y, WANG Y, ZHANG H, et al. A novel approach to prepare a gradient polymer with a wide damping temperature range by in-situ chemical modification of rubber during vulcanization[J]. Macromolecular Rapid Communications, 2006, 27(14): 1162-1167.
[12] LI X, XIE J, LIPNER J, et al. Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site[J]. Nano Letters, 2009, 9(7): 2763-2768.
[13] 唐虹,张渭源,黄晓梅. 机织面料吸湿快干梯度结构的构建[J]. 纺织学报, 2006, 27(08): 41-44.
TANG Hong, ZHANG Weiyuan, HUANG Xiaomei. Construction of moisture absorbent and dry fast woven fabrics[J]. Journal of Textile Research, 2006, 27(08): 41-44.
[14] 申莹,邓炳耀,刘庆生,等. 不同填充密度的梯度结构复合滤材的制备及其性能[J]. 纺织学报, 2017, 38(07): 23-27.
SHEN Ying, DENG Bingyao, LIU Qingsheng, et al. Preparation and properties of gradient filter materials with different packing density[J]. Journal of Textile Research, 2017, 38(07): 23-27.
[15] 张恒,甄琪,王俊南,等. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016, 37(05): 17-22.
ZHANG Heng, ZHEN Qi, WANG Junnan, et al. Structure and performance of high temperature resistant fibrous filters with gradient structure[J]. Journal of Textile Research, 2016, 37(05): 17-22.

[1] 赵宝宝 钱晓明 钱幺 范金土 封严 朵永超. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018, 39(07): 95-099.
[2] 张恒 甄琪 钱晓明 刘让同 张一风. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018, 39(04): 63-68.
[3] 刘凡 钱晓明 赵宝宝 钱幺 朵永超. 柔软处理对涤纶/锦纶6中空桔瓣型超细纤维非织造布性能的影响[J]. 纺织学报, 2018, 39(03): 114-119.
[4] 刘雷艮 林振锋 沈忠安 牛建涛. 静电纺多孔超细纤维膜的吸油性能[J]. 纺织学报, 2018, 39(02): 7-13.
[5] 张恒 甄琪 钱晓明 杨红英 申屠宝卿 张一风 刘让同. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(01): 56-61.
[6] 蒋佩林 俞晶颖 金平良 黄晨 靳向煜 李健. 脱漂工艺对医用水刺全棉非织造材料性能的影响[J]. 纺织学报, 2017, 38(10): 88-93.
[7] 魏发云 张伟 邹学书 何洋 张瑜. 等离子体诱导丙烯酸接枝改性聚丙烯熔喷非织造材料[J]. 纺织学报, 2017, 38(09): 109-114.
[8] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
[9] 栾巧丽 邱华 成钢 刘晓燕. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017, 38(03): 67-71.
[10] 王敏 韩建 于斌 朱斐超 Solitario Nesti 宋卫民. 双组分橘瓣型纺粘水刺材料的过滤和力学性能[J]. 纺织学报, 2016, 37(09): 16-20.
[11] 张恒 甄琪 王俊南 钱晓明 刘永胜. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016, 37(05): 17-0.
[12] 任煜 李猛 尤祥银. 驻极处理对聚乳酸熔喷材料性能的影响[J]. 纺织学报, 2015, 36(09): 13-17.
[13] 李彩兰 邓谨 王荣武. 图像融合技术在非织造材料纤维取向中的应用[J]. 纺织学报, 2013, 34(10): 26-0.
[14] 常过, 邓炳耀, 刘庆生, 沈璐, 张越. PLA纺粘非织造材料的制备和表征[J]. 纺织学报, 2012, 33(8): 35-39.
[15] 顾义师, 谢玲玲, 邵彩英, 高卫东, 黄丹. 三氯卡班/聚乳酸超细纤维的制备及抗菌性能[J]. 纺织学报, 2012, 33(7): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!