纺织学报 ›› 2018, Vol. 39 ›› Issue (07): 137-147.doi: 10.13475/j.fzxb.20170804111

• 管理与信息化 • 上一篇    下一篇

多工序递阶的棉纺过程质量智能控制模型

  

  • 收稿日期:2017-08-25 修回日期:2018-04-12 出版日期:2018-07-15 发布日期:2018-07-16

Intelligent control model for spinning quality based on multi-process hierarchy

  • Received:2017-08-25 Revised:2018-04-12 Online:2018-07-15 Published:2018-07-16

摘要:

针对纺纱质量特征值之间因存在非线性关系而难以精准控制的问题,对影响纱线质量波动的关键指标进行了辨识,并提取断裂强度为关键指标;设计了基于纱线断裂强度的质量控制点及质量损失函数,提出了纺纱过程多工序质量控制点间知识关联方法;以质量损失函数为目标函数构建了基于多工序递阶的棉纺过程质量控制模型,并利
用多目标烟花算法求解。结果表明,提出的质量控制模型实现了纱线断裂强度的多工序控制,有利于解决质量特征值之间“输入—输出”关系的非线性化问题。该模型控制结果与未考虑多工序间知识关联以及控制前的结果相比,其纱线断裂强度提高了1.27%和3.40%,因纱线断裂强度不达标导致的纱线不合格品率降低了23.48%和50.00%。

关键词: 纺纱质量, 控制模型, 智能控制, 多工序递阶, 多目标烟花算法

Abstract:

To solve the problem of difficult control on yarn quality accurately because of the nonlinear input-output relationships among the spinning quality, key indexes injluencing spinning quality fluctuation were identified and the index fracture strength was abstracted. The quality control point and quality loss function based on fracture strength were designed, A knowledge correlation analysis method was proposed. Then, a spinning quality control model based on hierarchical multi-process was built, and it was solved by multi-object firework algorithm. The verification results show that the proposed control model realizes accurate control on yarn quality, and it is suitable for solving the nonlinear problem of the input-output relationship in spinning quality output characteristic value. Meanwhile, by comparing the control results with the model ignoring the knowledge relation among the multi-process and the results before the control, it is found that the fracture strength is improved by 1.27% and 3.40%, and the nonconforming rate of the yarn production result from the nonqualified fracture strength decerases by 23.48% and 50.00%.

Key words: spinning quality, control model, intelligent control, hierarchical multi-process, multi-object firework algorithm

[1] 王富忠. 时变需求下服装销售企业的动态库存控制[J]. 纺织学报, 2015, 36(10): 167-0.
[2] 邵景峰 贺兴时 王进富 白晓波 雷霞 刘聪颖. 纺纱过程质量波动预测新方法[J]. 纺织学报, 2015, 36(04): 37-0.
[3] 陈德传. 矫正织物蛇行跑偏运动的智能纠偏系统[J]. 纺织学报, 2007, 28(6): 112-114.
[4] 周鸣争. 定形机温度智能控制系统的设计[J]. 纺织学报, 1999, 20(04): 58-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!