纺织学报 ›› 2018, Vol. 39 ›› Issue (08): 117-123.doi: 10.13475/j.fzxb.20170906607
摘要:
为避免传统手工特征和局部特征难以全面表征和准确量化图像情感特征的不足,以领带花型为研究对象,提出了一种融合手工情感特征的基于卷积神经网络的织物图像情感分类方法,可为服饰设计、服装选购等提供辅助。 首先对领带花型图像进行情感评价,建立领带花型图像的情感样本库;然后提取图像饱和度、纹理等手工情感特征和图像像素值作为卷积神经网络的输入;其次建立卷积神经网络模型,将2 000幅样本图像作为训练样本对卷积神经网络进行训练;最后将1 000幅检测样本输入训练后的卷积神经网络,实现了领带花型图像的情感分类。实验结果显示:该方法的情感分类准确率为89.7%,比采用传统手工特征的分类方法有较大提升,较其他卷积神经网络模型正确率更高。
[1] | 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141. |
[2] | 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135. |
[3] | 景军锋 范晓婷 李鹏飞 洪良. 应用深度卷积神经网络的色织物缺陷检测[J]. 纺织学报, 2017, 38(02): 68-74. |
|