纺织学报 ›› 2018, Vol. 39 ›› Issue (08): 117-123.doi: 10.13475/j.fzxb.20170906607

• 服装工程 • 上一篇    下一篇

基于卷积神经网络的领带花型情感分类

  

  • 收稿日期:2017-09-30 修回日期:2018-05-07 出版日期:2018-08-15 发布日期:2018-08-13

Emotion classification of necktie pattern based on convolution neural network

  • Received:2017-09-30 Revised:2018-05-07 Online:2018-08-15 Published:2018-08-13

摘要:

为避免传统手工特征和局部特征难以全面表征和准确量化图像情感特征的不足,以领带花型为研究对象,提出了一种融合手工情感特征的基于卷积神经网络的织物图像情感分类方法,可为服饰设计、服装选购等提供辅助。 首先对领带花型图像进行情感评价,建立领带花型图像的情感样本库;然后提取图像饱和度、纹理等手工情感特征和图像像素值作为卷积神经网络的输入;其次建立卷积神经网络模型,将2 000幅样本图像作为训练样本对卷积神经网络进行训练;最后将1 000幅检测样本输入训练后的卷积神经网络,实现了领带花型图像的情感分类。实验结果显示:该方法的情感分类准确率为89.7%,比采用传统手工特征的分类方法有较大提升,较其他卷积神经网络模型正确率更高。

关键词: 卷积神经网络, 深度学习, 领带花型, 织物情感, 情感分类

Abstract:

In order to avoid disadvantages of traditional manual features and local features that cannot characterize or quantify emotional features of images comprehensively and accurately, an method of fabric images emotion classification based on convolution neural network was proposed for evaluating the necktie pattern, and this method combined manual aesthetic features. This method is helpful for clothing design, clothing selection, etc. First, emotional evaluation of necktie pattern was processed, then an emotional sample library of necktie pattern images was established. We extracted manual emotional features such as image saturation and texture combined with the pixel values of sample images as the input data of the convolution neural network. An emotion classification model of convolution neural network was built, and the network structure and parameters were determined by experiments. We used 2 000 images as training samples to train the neural network. 1 000 test samples were input to the convolution neural network, and emotional classification of the images was evaluated automatically through our models. Experiment results showed that our method achieves classification accuracy of 89.7%, which is a greater improvement than the traditional methods based on manual features, and better than other convolution neural networks models with popular network structures.

Key words: convolution neural network, keep learning, necktie pattern, fabric imate emotion, emotion classification

[1] 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141.
[2] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
[3] 景军锋 范晓婷 李鹏飞 洪良. 应用深度卷积神经网络的色织物缺陷检测[J]. 纺织学报, 2017, 38(02): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈受之. 科研工作要提高经济效益为国民经济服务[J]. 纺织学报, 1982, 3(09): 57 -59 .
[2] 朱龙彪;庄健;徐海黎. 高性能摆丝机械的改造设计[J]. 纺织学报, 2004, 25(04): 87 -88 .
[3] 王庆九;陈宗农;詹建潮. 剑杆织机控制系统智能化双向检测平台的研制[J]. 纺织学报, 2005, 26(5): 106 -107 .
[4] 张志伯;王凤云;毛建华. 分散染料的晶型对上染率的影响[J]. 纺织学报, 1985, 6(07): 11 -13 .
[5] 孙斌;赵坚;王勤. 浆料的等离子体改性[J]. 纺织学报, 1991, 12(02): 4 -7 .
[6] 孙健怡. SOMET SM93剑杆织机电控系统分析[J]. 纺织学报, 1995, 16(02): 33 -37 .
[7] 李进;柯万坤. 色织麻棉产品设计与工艺探讨[J]. 纺织学报, 1993, 14(04): 19 -21 .
[8] 朱新生;戴礼兴;闻荻江;喻绍勇. 氢键控制与聚醋酸乙烯醇解纺丝[J]. 纺织学报, 2005, 26(2): 136 -137 .
[9] 万健. 纺丝/麻混纺气流纱的经验[J]. 纺织学报, 1992, 13(08): 26 -27 .
[10] 杨泽. 横机编织四平空转组织的简易控制方法[J]. 纺织学报, 1990, 11(06): 26 -27 .