纺织学报 ›› 2018, Vol. 39 ›› Issue (02): 55-61.doi: 10.13475/j.fzxb.20171001707

• 纺织工程 • 上一篇    下一篇

纤维在输纤通道气流场中运动的模拟

  

  • 收稿日期:2017-10-09 修回日期:2017-11-13 出版日期:2018-02-15 发布日期:2018-02-11

Simulation on fiber motion in airflow field of transfer channel

  • Received:2017-10-09 Revised:2017-11-13 Online:2018-02-15 Published:2018-02-11

摘要:

为深入探讨纤维在转杯纺纱通道尤其是输纤通道气流场中的运动形态,采用数值模拟的方法获得转杯纺纱通道内的气流流动特征,在此基础上建立了单纤维在气流场中的动力学方程,并讨论了伸直纤维和不同弯钩度的前弯钩纤维在输纤通道内的运动形态。模拟结果表明:输纤通道入口处存在气流漩涡;输纤通道横截面上的气流速度分布不均匀,通道中心比壁面附近的气流速度高,纵向方向的气流速度则不断增大;输纤通道内的纤维倾向于沿着气流速度较高的通道中心运动;纵向加速气流有利于保持伸直纤维的形态和伸直弯钩纤维;伸直弯钩的耗时随着弯钩度的增大而增大,而增大通道内的气流速度有利于缩短弯钩伸直的耗时。

关键词: 纤维运动, 弯钩, 输纤通道, 气流场, 数值模拟

Abstract:

In order to the fiber configuration in the airflow of the rotor spinning channel, especially the transfer channel, which has a great influence on the rotor spun yarn properties. The airflow characteristics in the rotor spinning channel were obtained by numerical simulation, then the fiber dynamical equations were developed. The motion of straight and leading hooked fibers in the transfer channel were discussed. The simulation results shwo that vortices exist at the transfer channel inlet, and the distribution of the air velocity in the transfer channel cross section is uneven, and the air velocity in the transfer channel center is higher than that near the wall, however, the air velocity is increasing from the transfer channel inlet to the outlet. The fiber tends to move along the transfer channel center which has higher air velocity. The accelerating air helps the straight fiber to maintain its form and straighten the hooked fiber. The time to straighten the hook increases with the increasing of the bending degree, while increasing the air velocity in the transfer channel is conducive to decrease the time.

Key words: fiber motion, hook, transfer channel, numerical simulation

[1] 张礼会, 张百祥. 转杯纺纤维输送管道的研究 [J]. 中国纺织大学学报, 1991, 17(6): 16-24. ZHANG Lihui, ZHANG Baixiang. A study of fiber transfer channel in rotor spinning [J]. Journal of China Textile University, 1991, 17(6):16-24. [2] LIN H.T., ZENG Y.C., WANG J. Computational simulation of air flow in the rotor spinning unit [J]. Textile Research Journal, 2015, 86(2): 115-126. [3] SMITH A.C., ROBERTS W.W. Straightening of crimped and hooked fibers in converging transport ducts: computational modeling [J]. Textile Research Journal, 1994, 64(6): 335-344. [4] BANGERT L.H., SAGDEO P.M. On fiber alignment using fluid-dynamic forces [J]. Textile Research Journal, 1977, 47(12): 773-780. [5] YAMAMOTO S., MATSUOKA T. A method for dynamic simulation of rigid and flexible fibers in a flow field [J]. Journal of Chemical Physics, 1993, 98(1): 644-650. [6] KONG L.X., PLATFOOT R.A. Computational two-phase air/fiber flow within transfer channels of rotor spinning machines [J]. Textile Research Journal, 1997, 67(4): 269-278. [7] KONG L.X., PLATFOOT R.A. Fibre transportation in confined channel with recirculations [J]. Computers & Structures, 2000, 78(1): 237-45. [8] ZENG Y.C., YANG J.P., YU C.W. Mixed Euler–Lagrange approach to modeling fiber motion in high speed air flow [J]. Applied Mathematical Modelling, 2005, 29(3): 253-261. [9] 吴望一. 流体力学 [M]. 北京: 北京大学出版社, 1982. WU W.Y. Fluid dynamics [M]. Beijing: Peking University Press,1982. [10] 朱泽飞,林建忠. 纤维状粒子悬浮流动力学分析 [M]. 上海: 中国纺织大学出版社, 2000. ZHU Z.F., LIN J.Z. Analysis of fibrous particle suspension flow mechanics [M]. Shanghai: China Textile University Press, 2000. [11] GANSER G.H. A rational approach to drag prediction of spherical and nonspherical particles [J]. Powder Technology, 1993, 77: 143-152. [12] LEITH D. Drag on nonspherical objects [J]. Aerosol Science and Technology, 1987, 6(2): 153-161. [13] HAIDER A., LEVENSPIEL O. Drag coefficient and terminal velocity of spherical and nonspherical particles [J]. Powder Technology, 1989, 58: 63-70. [14] HOLZER A., SOMMERFELD M. New simple correlation formula for the drag coefficient of non-spherical particles [J]. Powder Technology, 2008, 184(3): 361-365. [15] 张亚秋. 基于图像处理技术的弯钩纤维表征研究 [D]; 东华大学, 2014. ZHANG Y.Q. The characterization study of hooked fiber based on image processing [D]. Donghua University, 2014. [16] KONG L.X., PLATFOOT R.A. Two-dimensional simulation of air flow in the transfer channel of open-end rotor spinning machines [J]. Textile Research Journal, 1996, 66(10): 641-650.

[1] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[2] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[3] 韩晨晨 程隆棣 高卫东 薛元 杨瑞华. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018, 39(02): 32-37.
[4] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[5] 陈洪立 李炯 金玉珍 武传宇 胡旭东. 空心锭结构参数对喷气涡流纺内流场的影响[J]. 纺织学报, 2017, 38(12): 135-140.
[6] 张东 孟婥. 纱筒残余氨的扩散过程建模与数值模拟[J]. 纺织学报, 2017, 38(09): 149-154.
[7] 许静娴 李俊 刘慧娟 王云仪. 热调节暖体假人在着装舒适性评价中的应用现状[J]. 纺织学报, 2017, 38(07): 164-172.
[8] 刘超 杨瑞华 薛元 高卫东. 凝聚槽类型对转杯内气流场影响的数值模拟[J]. 纺织学报, 2017, 38(05): 128-133.
[9] 王红梅 郑振荣 张楠楠 张玉双 赵晓明. 多孔纤维织物热湿传递数值模拟的研究进展[J]. 纺织学报, 2016, 37(11): 159-165.
[10] 刘超 杨瑞华 王鸿博 高卫东. 转杯纺纱通道三维流场的数值模拟[J]. 纺织学报, 2016, 37(09): 145-150.
[11] 吴佳佳 唐虹. 应用ABAQUS的织物热传递有限元分析[J]. 纺织学报, 2016, 37(09): 37-41.
[12] 张亮 冯志华 张晓飞 刘帅. 喷气织机辅助喷嘴与异形筘结构参数对流场的影响[J]. 纺织学报, 2016, 37(09): 129-133.
[13] 包西平 刘宜胜 吴震宇. 折入孔位置对纯气动毛边折入装置流场的影响[J]. 纺织学报, 2016, 37(08): 125-131.
[14] 张亮 冯志华 刘帅 陈亮 张晓飞. 喷气织机辅助喷嘴喷孔结构优化设计[J]. 纺织学报, 2016, 37(06): 112-117.
[15] 苏云 王云仪 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(01): 167-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!