纺织学报 ›› 2018, Vol. 39 ›› Issue (09): 57-64.doi: 10.13475/j.fzxb.20171001908

• 纺织工程 • 上一篇    下一篇

基于改进判别性完整局部二值模式与格分割的织物瑕疵检测方法

    

  1.  
  • 收稿日期:2017-10-09 修回日期:2018-06-20 出版日期:2018-09-15 发布日期:2018-09-12
  • 基金资助:

     

Fabric defect inspection based on modified discriminant complete local binary pattern and lattice segmentation

  • Received:2017-10-09 Revised:2018-06-20 Online:2018-09-15 Published:2018-09-12

摘要:

为解决传统的完整局部二值模式在织物疵点检测时存在直方图维数过高和特征冗余并且在小区域图像变化幅度剧烈或变化幅度平缓时存在局限性的问题,提出一种改进判别性完整局部二值模式并结合自动格分割的织物瑕疵检测方法,该新算法可分为训练和测试2部分。通过实验将该算法、小波预处理的黄金图像相减方法、布林线指标方法、正则带方法进行对比,针对2 种纹理3 类瑕疵的织物图像数据集进行测试。结果表明,该方法对星形图案和箱形图案纺织品检测效果较好,一部分的查全率可达到0.99,大部分检测结果的查全率均在0.90 以上。

关键词: 完整局部二值模式, 格分割, 特征提取, 相对散度, 织物瑕疵检测

Abstract:

The conventional cenral local binarization mode (CLBP) used in fabric defect inspection has the problems of high histogram dimension and feature redundancy, and limitation exists in conventional CLBP when the amplitude of the small part of the image varies greatly or the amplitude is flat. To solve the problems, a modified discriminant complete local binary pattern with lattice segmentation for fabric defect inspection was proposed. The proposed algorithm was divided into two a training part and testing part. The training stage was to calculate the feature value for each lattice after lattice segmentation in defect-free images and acquire the mean value of all feature values. The threshold was calculated by calculating the relative divergence between the feature value of every lattice and the mean of the feature values. The testing stage was to calculate the relative divergence and compare the result with the threshold. The lattice whose result was larger than the threshold was marked as a defect area. The proposed algorithm was compared with local binary patterns, boolean line indicator method, regular band method algorithms. Testing on fabric image datasets including 2 kinds of textures and 3 kinds of defects shows that the method has better inspection effect on star pattern and box pattern fabrics, one part of the positive rate (TPR) value can reach 0.99, and most of the inspection results of TPR are above 0.90.

Key words: central local binarization mode, lattice segmentation, feature extraction, relativedivergence, fabric defect inspection

中图分类号: 

  •  
[1] 董蓉 李勃 徐晨. 应用积分图的织物瑕疵检测快速算法[J]. 纺织学报, 2016, 37(11): 141-147.
[2] 曹霞 李岳阳 罗海驰 蒋高明 丛洪莲. 蕾丝花边的改进型纹理特征检索方法[J]. 纺织学报, 2016, 37(06): 142-154.
[3] 黎聪 闫学娜 曾祥忠 梁猛 张莹. 应用一维傅里叶变换的剖幅区自动识别与定位[J]. 纺织学报, 2016, 37(01): 147-151.
[4] 杜玉红 王加富 蒋秀明 周国庆 罗永恒. 应用聚类统计分析的棉花异纤图形检测算法[J]. 纺织学报, 2015, 36(03): 135-0.
[5] 管声启 高照元 吴宁 徐帅华. 基于视觉显著性的平纹织物疵点检测[J]. 纺织学报, 2014, 35(4): 56-0.
[6] 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4): 137-142.
[7] 杨晓波. 基于自适应离散小波变换的混合特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(1): 133-137.
[8] 杨晓波. 基于人工神经网络的织物疵点聚类分析[J]. 纺织学报, 2011, 32(9): 29-33.
[9] 刘素一;夏蕾. 基于元胞自动机的织物图像拼接[J]. 纺织学报, 2011, 32(1): 29-33.
[10] 田承泰;步红刚;汪 军;陈 霞;. 基于时间序列分形特征的织物瑕疵检测[J]. 纺织学报, 2010, 31(5): 44-47.
[11] 蒋高平;钟跃崎;王荣武. 基于谱线特征的羊绒与羊毛的鉴别[J]. 纺织学报, 2010, 31(4): 15-19.
[12] 罗一平;汪亚明;周平;许建龙. 配光与照明对织物疵点信号特征值的影响[J]. 纺织学报, 2007, 28(5): 66-69.
[13] 李晓久;刘皓. KFDA在领口质量评价系统中的应用[J]. 纺织学报, 2007, 28(3): 76-78.
[14] 周平.;汪亚明;朱森勇. 时-空域多特征证据学习与增强的印染疵点在线检测[J]. 纺织学报, 2006, 27(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 余志成;林鹤鸣;张珍. 预定型对涤纶纤维在超临界二氧化碳中收缩性能的影响[J]. 纺织学报, 2004, 25(03): 16 -18 .
[2] . 浆纱学术讨论会简报[J]. 纺织学报, 1982, 3(09): 10 .
[3] 刘晓霞;王振永;徐卫林. 棕叶纤维的开发研究初探[J]. 纺织学报, 2004, 25(03): 74 -75 .
[4] 祖世宾. 高收缩涤纶纤维过滤呢的研制和性能分析[J]. 纺织学报, 1984, 5(08): 35 -38 .
[5] 阎德顺;俞芸芸;张恕;朱关福. 凝结法回收退浆废水中聚乙烯醇[J]. 纺织学报, 1984, 5(08): 42 -46 .
[6] 戴元熙. 空调室高效风机的选用[J]. 纺织学报, 1984, 5(08): 49 -50 .
[7] 刘亮喜;汪阿庆. 用差动变压器提高直流多单元拖动同步能力[J]. 纺织学报, 1984, 5(08): 54 -55 .
[8] 文世平. 织机节电保护开关的介绍[J]. 纺织学报, 1984, 5(08): 62 .
[9] 练军;王锦成. 毛涤混纺织物折皱回复性能的理论探讨及推广[J]. 纺织学报, 2000, 21(05): 19 -20 .
[10] 徐步高;张平国. 四连杆打纬机构的优化设计[J]. 纺织学报, 1987, 8(02): 16 -18 .