纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 1-8.doi: 10.13475/j.fzxb.20180101308

• 纤维材料 •    下一篇

静电纺双疏型聚丙烯腈基纳米纤维膜制备及其性能

仝伟1,2,3,4, 方汝仙1,2,3,4, 李家炜1,2,3,4, 易玲敏1,2,3,4()   

  1. 1.浙江理工大学 材料与纺织学院、丝绸学院, 浙江 杭州 310018
    2.浙江理工大学 先进功能涂层研究所,浙江 杭州 310018
    3.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    4.浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
  • 收稿日期:2018-01-04 修回日期:2018-09-25 出版日期:2019-01-15 发布日期:2019-01-18
  • 通讯作者: 易玲敏
  • 作者简介:仝伟(1993—),男,硕士生。主要研究方向为功能化纳米纤维膜的制备。
  • 基金资助:
    国家自然科学基金资助项目(21276243)

Preparation and properties of amphiphobic polyacrylonitrile electrospun nanofiber films

TONG Wei1,2,3,4, FANG Ruxian1,2,3,4, LI Jiawei1,2,3,4, YI Lingmin1,2,3,4()   

  1. 1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Institute of Advanced Functional Coatings, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-01-04 Revised:2018-09-25 Online:2019-01-15 Published:2019-01-18
  • Contact: YI Lingmin

摘要:

为制备耐磨性能良好的双疏型纤维膜并将其应用于油/水、油/油分离领域,以静电纺丝方法制备的聚丙烯腈(PAN)纳米纤维为基材,采用多巴胺(DA)与十三氟辛基三乙氧基硅烷(G617)对纤维膜进行改性制得双疏型PAN纤维膜。借助扫描电子显微镜、接触角测量仪、X 射线光电子能谱仪等手段探讨纺丝条件、DA与G617用量等对改性前后PAN纤维膜表面形貌以及疏水疏油性能的影响。结果表明:纺丝液中PAN质量分数为13.8%、纺丝电压为18 kV时,纤维形貌最佳;改性后PAN纤维膜的乙二醇接触角可达135.1°,甲苯接触角为0°,水接触角可达141.9°,色拉油接触角可达131.2°;摩擦20次后PAN纤维膜的水、色拉油接触角均大于125°,可顺利实现水/甲苯、甲苯/乙二醇以及甲苯/水乳液的分离。

关键词: 静电纺丝, 聚丙烯腈, 纳米纤维膜, 多巴胺改性, 油/水分离, 油/油分离

Abstract:

In order to prepare amphiphobic fiber materials with good wear resistance for oil/water or oil/oil separation, amphiphobic polyacrylonitrile (PAN) nanofiber materials were prepared by using PAN electrospun nanofibers as the substrate, and dopamine (DA) and tridecafluorooctyltriethoxy-silane (G617) as the surface treatment agent. The effects of various electrospinning process factors, DA and G617 content on the surface morphology and hydrophobic/oleophobic properties of PAN electrospun films were investigated by scanning electron microscopy, contact angle measuring instrument, X-ray photoelectron spectroscopy and so on. The results show that when the mass ratio of PAN in spinning solution is 13.8% and the spinning voltage is 18 kV, the fiber morphology is the best. And the ethylene glycol contact angle, the toluene contact angle, the water contact angle and the salad oil contact angle of the modified PAN electrospun films can be 135.1°, 0°, 141.9° and 131.2°, respectively. Moreover, the water or salad oil contact angle of the modified PAN electrospun films can be larger than 125° after 20 cycles of abrasion test. The results show that the modified PAN electrospun films exhibit good properties in the separation of water/toluene, toluene/ethylene glycol and toluene-water emulsion.

Key words: electrospinning, polyacrylonitrile, nanofiber film, dopamine modification, oil/water separation, oil/oil separation

中图分类号: 

  • TQ340.649

图1

不同PAN质量分数所得静电纺纤维膜的SEM照片(×2 000)"

图2

不同纺丝电压下PAN静电纺纤维膜的SEM照片(×2 000)"

图3

不同多巴胺质量浓度改性后PAN静电纺纤维膜的SEM照片(×2 000)"

图4

不同质量浓度G617改性后PAN膜的静态接触角 (a) Water contact angles; (b) Ethylene glycol contact angles; (c) Salad oil contact angles"

图5

静电纺PAN纤维膜的SEM照片(×2 000) (a) Pure PAN electrospun film; (b) PAN electrospun films pretreated by DA; (c) PAN electrospun film modified by G617"

图6

未改性、DA预处理以及G617改性PAN膜的傅里叶红外光谱"

表1

PAN纤维膜表面的元素含量"

样品名称 C1s N1s O1s F1s Si2p
PAN膜 73.44 17.49 9.07 0.00 0.00
DA预处理PAN膜 65.43 7.76 26.81 0.00 0.00
G617改性PAN膜 36.50 1.62 9.65 48.32 3.90

图7

未改性、DA预处理以及G617改性PAN膜的X射线光电子能谱图"

图8

改性后PAN膜摩擦后的静态接触角"

图9

改性PAN膜摩擦50次后SEM照片(×2 000)"

[1] 汪怀远, 孟旸, 赵景岩, 等. 双疏表面的制备及性能研究新进展[J]. 材料工程, 2014 (3):90-96.
WANG Huaiyuan, MENG Yang, ZHAO Jingyan, et al. New progress on preparation and properties of amphiphobic surface[J]. Materials Engineering, 2014 (3):90-96.
[2] 刘耀丰. 基于疏水/疏油膜的镁空气电池结构设计及电化学性能研究[D]. 天津:天津理工大学, 2015: 23-57.
LIU Yaofeng. The structure design and electrochemical properties of magnesium-air battery based on hydrophobic/oleophobic film[D]. Tianjin: Tianjin University of Technology, 2015: 23-57.
[3] HUANG Y X, WANG Z, HOU D, et al. Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation[J]. Journal of Membrane Science, 2017,531:122-128.
doi: 10.1016/j.memsci.2017.02.044
[4] HU Z, WANG H, ZHU Y, et al. Rapid development of thickness-controllable superamphiphobic coating on the inner wall of long narrow pipes[J]. AIChE Journal, 2017,63(9):3636-3641.
doi: 10.1002/aic.v63.9
[5] 薛朝华, 尹伟, 贾顺田. 纤维基超疏水功能表面制备方法的研究进展[J]. 纺织学报, 2012,33(4):146-152.
XUE Zhaohua, YIN Wei, JIA Shuntian. Progress in fabrication of fiber-based superhydrophobic surfaces[J]. Journal of Textile Research, 2012,33(4):146-152.
doi: 10.1177/004051756303300207
[6] TIAN X, YI L, MENG X, et al. Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones[J]. Applied Surface Science, 2014,307:566-575.
doi: 10.1016/j.apsusc.2014.04.074
[7] 周惠敏, 谢婷婷, 李智勇, 等. 等离子体表面改性协同静电喷雾在车饰毛织物疏水整理中的应用[J]. 纺织学报, 2016,37(8):89-93.
ZHOU Huimin, XIE Tingting, LI Zhiyong, et al. Application of plasma modification in combination with electrostatic spraying in hydrophobic finishing of wool textiles for automotive decoration[J]. Journal of Textile Research, 2016,37(8):89-93.
doi: 10.1177/004051756703700204
[8] SANCHEZ L D, BRACK N, POSTMA A, et al. Surface modification of electrospun fibres for biomedical applications: a focus on radical polymerization methods[J]. Biomaterials, 2016,106:24-45.
doi: 10.1016/j.biomaterials.2016.08.011 pmid: 27543920
[9] 冯雪, 汪滨, 王娇娜, 等. 空气过滤用聚丙烯腈静电纺纤维膜的制备及其性能[J]. 纺织学报, 2017,38(4):6-11.
FENG Xue, WANG Bin, WANG Jiaona, et al. Preparation and properties of polyacrylonitrile nanofiber membranes used for air filtering by electrospinning[J]. Journal of Textile Research, 2017,38(4):6-11.
[10] YI L, MENG X, TIAN X, et al. Wettability of electrospun films of microphase-separated block copolymers with 3, 3, 3-trifluoropropyl substituted silox-ane segments[J]. The Journal of Physical Chemistry C, 2014,118(46):26671-26682.
doi: 10.1021/jp5065566
[11] SMITH S A, WILLIAMS B P, JOO Y L. Effect of polymer and ceramic morphology on the material and electrochemical properties of electrospun PAN/polymer derived ceramic composite nanofiber membranes for lithium ion battery separators[J]. Journal of Membrane Science, 2017,526:315-322.
doi: 10.1016/j.memsci.2016.12.052
[12] ZHAO J, SUN Z, SHAO Z, et al. Effect of surface-active agent on morphology and properties of electrospun PVA nanofibres[J]. Fibers and Polymers, 2016,17(6):896-901.
doi: 10.1007/s12221-016-6163-y
[13] LIU Z, ZHAO J, LIU P, et al. Tunable surface morphology of electrospun PMMA fiber using binary solvent[J]. Applied Surface Science, 2016,364:516-521.
doi: 10.1016/j.apsusc.2015.12.176
[14] 罗必新. 氟硅疏水疏油材料的制备与性质研究[D]. 武汉:华中师范大学, 2009: 30-51.
LUO Bixin. The preparation and characterization of fluoro-silicone hydrophobic and oleophobic materials[D]. Wuhan: Central China Normal University, 2009: 30-51.
[15] 张娇娇. 聚多巴胺改性静电纺聚丙烯腈纤维膜及其油水分离性能[D]. 上海:东华大学, 2017: 22-54.
ZHANG Jiaojiao. Study on PAN electrospun nanofiber membrane modified by polydopamine and its properties on oil/water separation[D]. Shanghai: Donghua University, 2017: 22-54.
[16] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007,318(5849):426-430.
doi: 10.1126/science.1147241 pmid: 17947576
[17] 李珍, 王军. 静电纺丝可纺性影响因素的研究成果[J]. 合成纤维, 2008,37(9):6-11.
LI Zhen, WANG Jun. Studies on influential factors on nanofiber spinnability of electrospinning[J]. Synthetic Fiber in China, 2008,37(9):6-11.
[18] 杨豆, 张卫波, 刘锰钰, 等. 静电纺丝制备纳米纤维的影响因素研究进展[J]. 合成技术及应用, 2017,32(1):25-29.
YANG Dou, ZHANG Weibo, LIU Mengyu, et al. Research progress on the influence factors of preparing nanofibers by electrospinning[J]. Synthetic Technology and Application, 2017,32(1):25-29.
[19] 曹铁平, 李跃军, 王莹, 等. 静电纺丝法制备聚丙烯腈/聚苯胺复合纳米纤维及其表征[J]. 高分子学报, 2010,7(12):1464-1469.
CAO Tieping, LI Yuejun, WANG Ying, et al. Preparation and characterization of PAN/PANI composite nanofibers by eletrospinning[J]. Acta Polymerica Sinica, 2010,7(12):1464-1469.
[1] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[2] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[3] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[4] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2 药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[5] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[6] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[7] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[8] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[9] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[10] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[11] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[12] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[13] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[14] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[15] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!