纺织学报 ›› 2018, Vol. 39 ›› Issue (11): 14-19.doi: 10.13475/j.fzxb.20180103307

• 纤维材料 • 上一篇    下一篇

丝素蛋白/聚乙烯醇复合膜的制备及其表征

    


  • 收稿日期:2018-01-15 修回日期:2018-07-07 出版日期:2018-11-15 发布日期:2018-11-19
  • 基金资助:

     

Preparation and characterization of silk fibroin /polyvinyl alcohol composite membrane

  • Received:2018-01-15 Revised:2018-07-07 Online:2018-11-15 Published:2018-11-19

摘要:

为探讨离子液体共溶法对所制备丝素蛋白复合膜的结构与性能的影响,用离子液体1?烯丙基?3?甲基咪唑氯盐([Amim]Cl)分别溶解脱胶蚕丝和聚乙烯醇粉末,然后将2 个溶解体系按不同质量比共混后倒入成膜器,经甲醇浸泡去除[Amim]Cl 后自然风干成膜。借助紫外分光光度计、X 射线衍射仪、扫描电子显微镜、光学接触角仪、紫外灯耐气候试验箱对复合膜的性能进行测试与表征。结果表明:[Amim]Cl 共溶法成膜可提高丝素蛋白与聚乙烯醇组分的相容性,成膜过程中丝素蛋白组分向膜的表面迁移,并主要以Silk II构象存在;随着复合体系中丝素蛋白配比的增加,复合膜表面粗糙度增加,膜的亲水性能提升,同时还加速了复合膜的光老化进程。

关键词: 离子液体, 蚕丝, 丝素蛋白, 聚乙烯醇, 复合膜, 光老化

Abstract:

In order to discuss the influence of co-dissolution processing inionic liquid on structure and properties of silk fibroin composite membrane, the dugummed silk fiber and polyvinyl alcohol powder were dissolved by ionic liquid 1- allyl -3- methyl imidazolyl chloride ([Amim]Cl), respectively, and then the two dissolving systems were mixed according to different mass proportions and poured into a film former. After being soaked in methanol, [Amim]Cl was removed and naturally air-dried to form membranes. The composite membranes were tested and characterized by rltraviolet spectrophotometer, X-ray diffractometer, scanning electron microscope, optical contact angle meter and ultraviolet light resistant test box. The results show that the cimpatibility of silk fibroin and polyvinyl alcohol components can be improved by the [Amim]Cl co-dissolution method, the silk fibroin component during film formation migrates to the surface of the membrane, and its main conformation is the silk II structure. In addition, the surface roughness of the composite membrane increases with the increasing of the ratio of silk fibroin in the composite system, leading to the improvement of the hydrophilicity of the composite membrane. At the same time, the increasing of the ratio of silk fibroin will accelerate the photo-aging process of the composite membrane.

Key words: ionic liquid, silk, silk fibroin, polyvinyl alcohol, composite membane, photo-aging

[1] Wang W, Wang J, Yang H, et al. Improvement of histocompatibility of silk fibroin/polyurethane membrane with controlled release of aspirin[J]. Journal of Applied Polymer Science, 2014, 131(15): 4401-4404.
[2] Sah M K, Banerjee I, Pramanik K. Eggshell Membrane Protein Modified Silk Fibroin-Poly Vinyl Alcohol Scaffold for Bone Tissue Engineering: In Vitro and In Vivo Study[J]. Journal of Biomimetics Biomaterials & Biomedical Engineering, 2017, 32: 69-81.
[3] Wang C H, Hsieh C Y, Hwang J C. Flexible organic thin-film transistors with silk fibroin as the gate dielectric[J]. Advanced Materials, 2011, 23(14): 1630-1634.
[4] 王群旺, 熊杰, 张红萍,等. 聚丁二酸丁二醇酯调控丝素蛋白超细纤维膜形貌及其力学性能[J]. 复合材料学报, 2010, 27(5): 24-28.
WANG Qunwang, XIONG Jie, ZHANG Hongping, et al. Morphology and mechanical properties of electrospun silk fibroin ultrafine fibrous membranes adjusted and controlled by PBS[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 24-28.
[5] Rockwood D N, Preda R C, Yücel T, et al. Materials fabrication from Bombyx mori silk fibroin[J]. Nature protocols, 2011, 6(10): 1612-1631.
[6] Wang S, Liu Z L, Chen L M, et al. Study on the
Properties of the PVA/SF Blend Membranes[J]. Advanced Materials Research, 2013, 781-784: 546-549.
[7] Liu X, Zhang C, Xu W, et al. Blend films of silk fibroin and water-insoluble polyurethane prepared from an ionic liquid[J]. Materials Letters, 2011, 65(15–16): 2489-2491.
[8] De Moraes M A, Beppu M M. Biocomposite membranes of sodium alginate and silk fibroin fibers for biomedical applications[J]. Journal of Applied Polymer Science, 2014, 130(5): 3451-3457.
[9] 孙东豪, 吴徵宇, 卢锋. 聚乙烯醇/丝素蛋白共混膜的结构与性能研究[J]. 丝绸, 2001 (11): 6-8.
SUN Jiahao, WU Zhiyu, LU Feng. Study on the Structure and Properties of the Mixed Membrane of Polyvinyl Alcohol/Silk Fibroin[J]. Journal of Silk, 2001 (11): 6-8.
[10] 牟星, 彭鹏, 孙琪,等. 甲醇、戊二醛交联剂对丝素蛋白/明胶多孔支架的性能影响[J]. 功能材料, 2015, 46(3): 3023-3027.
MU Xing, PENG Peng, SUN Qi, et al. Effects of methanol and glutaraldehyde on properties of silk fibroin/gelatin porous scaffolds[J]. Journal of Functional Materials, 2015, 46(3): 3023-3027.
[11] Yin L H, Peng P, Mu X, et al. Preparation and characterization of three dimensional porous silk fibroin/gelatin composite scaffolds[J]. Journal of Functional Materials, 2013, 44(23): 3388-3391.
[12] Armand M, Endres F, MacFarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature materials, 2009, 8(8): 621-629.
[13] Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150.
[14] 张猛, 马博谋, 何春菊. 离子液体法制备再生纤维素/角蛋白共混膜的研究[J]. 东华大学学报(自然科学版), 2013, 39(1): 13-15. ZHANG Meng, MA Bomou, HE Chunju. Research of Regenerated Cellulose/Keratin Blend Membranes Prepared from Ionic Liquids[J]. Journal of Donghua University (Natural Science), 2013, 39(1): 13-15.
[15] 刘华丽, 刘秀英, 陈雍雍. 离子液体中丝素/聚乙烯醇共混膜的制备及表征[J]. 武汉纺织大学学报, 2011(6): 30-33.
LIU Huali, LIU Xiuying, CHEN Yongyong. Preparation and Characterization of Blend Films of Silk Fibroin and Poly (vinyl alcohol)
From an Ionic Liquid[J]. Journal of Wuhan Textile University, 2011(6): 30-33.
[16] 赵玲, 汤尧旭, 赵瑞方, 等. 羽毛在离子液体中的溶解及再生研究[J]. 毛纺科技, 2010, 08(38): 1-5.
ZHAO Ling, TANG Yaoxu, ZHAO Ruifang, et al. Dissolution and regeneration of feather keratins in ionic liquids[J]. Wool Textile Journal, 2010, 08(38): 1-5.
[17] 李长龙, 汤立洋, 王宗乾,等. 不同体系下羽
毛绒的溶解性能及光谱特性[J]. 纺织学报, 2017, 38(4): 27-31.
LI Changlong, TANG Liyang, WANG Zongqian, et al. Solubility and spectral characteristic of feather and down in different dissolution systems[J]. Journal of Textile Research, 2017, 38(4): 27-31.
[18] Li L, X ong Y, Yu S, et al. Facile preparation for robust and freestanding silk fibroin films in a 1-butyl-3-methyl imidazolium acetate ionic liquid system[J]. Journal of Applied Polymer Science, 2015, 132(47): 1-7.
[19] 王犇, 曹妍, 黄科林,等. 蔗渣纤维素在离子液体中的溶解与再生[J]. 化工学报, 2010, 61(6): 1592-1598.
WANG Ben, CAO Yan, HUANG Kelin, et al. Dissolution and regeneratio n of sugarcane bag asse cellulose in ionic liquid[J]. CIESC Journal, 2010, 61(6): 1592-1598.
[20] Wang Z, Chen W, Cui Z, et al. Studies on photoyellowing of silk fibroin and alteration of its tyrosine content[J]. The Journal of The Textile Institute, 2016, 107(4): 413-419.
[21] Millington K R. Photoyellowing of wool. Part 1: Factors affecting photoyellowing and experimental techniques[J]. Coloration Technology, 2006, 122(4): 169-186.
[22] 薛华育, 顾卓, 戴礼兴,等. 再生丝素/聚乙烯醇共混纳米纤维的制备及表征[J]. 高分子材料科学与工程, 2007, 23(6): 240-243.
XUE Huayu, GU Zhuo, DAI Lixing, et al. Preparation and Characterization of RSF/PVA Blending Nanofibers[J]. Polymer Materials Science and Engineering, 2007, 23(6): 240-243.
[23] 张慧慧, 胡晨光, 邵惠丽,等. 丝素在离子液体中的溶解及再生丝素纤维的结构[J]. 高分子材料科学与工程, 2011, 27(7): 66-68.
ZHANG Huihui, HU Chenguang, SHAO Huili,
et al. Dissolution of Silk Fibroin in Ionic Liquids and the Structure of the Regenerated Silk Fiber[J]. Polymer Materials Science and Engineering, 2011, 27(7): 66-68 .
[24] Dong X, Xing T L, Chen G Q. Influence of
Degumming Methods on Mechanical Properties of Silk and CODcr of Wastewater[J]. Advanced Materials Research, 2011, 332-334(1): 183-187.
[25] Huang W, Lei M, Huang H, et al. Effect of polyethylene glycol on hydrophilic TiO2 films: Porosity-driven superhydrophilicity[J]. Surface & Coatings Technology, 2010, 204(24): 3954-3961.
[26] 王宗乾, 杨海伟, 汤立洋,等. 漂白羊毛的防紫外线整理及其耐光稳定性能[J]. 纺织学报, 2017, 38(3): 99-107.
WANG Zongqain, YANG Haiwei, TANG Liyang, et al. Anti-ultraviolet finishing and light stability of bleached wool[J]. Journal of Textile Research, 2017, 38(3): 99-107.
[1] 周倩 袁久刚 李澜 王平 王强. 丝素蛋白的磷酸化及其仿生矿化膜的制备[J]. 纺织学报, 2018, 39(11): 8-13.
[2] 潘玉婷 李方 沈忱思 陈洪腾 刘艳彪 肖冬雪. 退浆废水中聚乙烯醇的膜蒸馏-超滤二级膜浓缩[J]. 纺织学报, 2018, 39(11): 96-102.
[3] 赵兵 祁宁 徐安长 钟洲 车明国 . 石墨烯/蚕丝复合材料研究进展[J]. 纺织学报, 2018, 39(10): 168-174.
[4] 杨海伟 王宗乾 徐晶晶 王明荣 王邓峰. 蚕丝丝素酪氨酸残基的偶合修饰与工艺调控[J]. 纺织学报, 2018, 39(09): 102-108.
[5] 朱金铭 钱建华 曹晨 曹原. 聚醚砜非织造布复合膜的空气过滤性能[J]. 纺织学报, 2018, 39(07): 55-62.
[6] 姚勇波 颜志勇 李喆 易洪雷 张玉梅 王华平. 牵伸倍率分配对纤维素/丝素蛋白共混纤维形态结构的影响[J]. 纺织学报, 2018, 39(06): 13-18.
[7] 李鹏飞 邓桦 马军 刘红斌 刘珍珠. 再生丝素蛋白溶液脱盐新工艺及其应用[J]. 纺织学报, 2018, 39(05): 20-24.
[8] 安亚洁 李敏 杜长森 田安丽 张奕 付少海. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(04): 87-92.
[9] 王宗乾 杨海伟 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39(04): 69-76.
[10] 龙啸云 张琰 葛明桥. 高强度抗老化土工布的制备与性能表征[J]. 纺织学报, 2018, 39(01): 66-70.
[11] 曹机良 孟春丽 曹毅 闫凯 吴宁杰 王潮霞. 烷基咪唑类双子型离子液体对涤纶织物的碱减量处理[J]. 纺织学报, 2018, 39(01): 79-83.
[12] 武海良 姚一军 沈艳琴 毛宁涛. 浆料混溶性对共混浆膜力学性能的影响[J]. 纺织学报, 2017, 38(10): 65-69.
[13] 陈云博 陈国强 邢铁玲. 磷酸硼掺杂硅溶胶对蚕丝织物的阻燃整理[J]. 纺织学报, 2017, 38(08): 96-101.
[14] 吴惠英. 脱胶工艺对蚕丝溶解及再生丝素蛋白纤维性能的影响[J]. 纺织学报, 2017, 38(08): 75-80.
[15] 杨莹莹 吕智宁 田伟 祝成炎. 木薯蚕丝结构与性能表征[J]. 纺织学报, 2017, 38(06): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘恩华;李树锋;程博闻;杜启云. 聚丙烯腈基中空碳纤维膜制备及结构研究[J]. 纺织学报, 2006, 27(4): 19 -21 .
[2] 姚杰;叶国铭. 纱条不匀的混沌特性[J]. 纺织学报, 2005, 26(1): 47 -48 .
[3] 王连贵. 多功能花式捻线机罗拉支承结构讨论[J]. 纺织学报, 1984, 5(09): 33 -35 .
[4] 郭松;李天毅;蔡雪原. 压洗丝饼工艺设备的技术改造[J]. 纺织学报, 1996, 17(04): 44 -45 .
[5] 宁俊;陈桂玲;李淑珍;陆亚新. 北京服装产业发展对策[J]. 纺织学报, 2006, 27(6): 107 -110 .
[6] 陈厚勇;邬步升;赵艳华;彭育园. 稀土在低温后媒染色工艺中的应用[J]. 纺织学报, 1989, 10(07): 35 -37 .
[7] 刘荣清. 环锭棉纺工艺技术发展综述[J]. 纺织学报, 1988, 9(10): 44 -45 .
[8] 胡雪敏;肖长发;贾广霞;刁彩虹. 不同第二单体共聚丙烯腈纤维的性能[J]. 纺织学报, 2009, 30(02): 1 -4 .
[9] 陆永良;张瑞云;李汝勤. MATLAB在原棉短纤维含量测试中的应用[J]. 纺织学报, 2001, 22(02): 25 -26 .
[10] 王其;冯勋伟. 大豆纤维针织物导湿透汽性研究[J]. 纺织学报, 2001, 22(03): 16 -17 .