纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 90-95.doi: 10.13475/j.fzxb.20180301406

• 染整与化学品 • 上一篇    下一篇

石墨烯-棉针织物电极材料的制备及其性能

杨静, 刘艳君()   

  1. 西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2018-03-05 修回日期:2018-12-16 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 刘艳君
  • 作者简介:杨静(1992—),女,硕士生。主要研究方向为纺织新材料、新工艺。

Preparation and properties of graphene-knitted electrode materials

YANG Jing, LIU Yanjun()   

  1. School of Texitile Science & Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2018-03-05 Revised:2018-12-16 Online:2019-03-15 Published:2019-03-15
  • Contact: LIU Yanjun

摘要:

为使石墨烯与织物更好地结合制备可折叠、电化学性能良好的柔性超级电容器,以乙醇和N,N-二甲基甲酰胺作为溶剂,鳞片石墨为溶质,通过液相剥离法制备石墨烯溶液,再采用电化学沉积法将石墨烯负载到棉针织物表面。借助场发射扫描电子显微镜和傅里叶变换红外光谱仪对棉针织物及柔性电极的表面形貌、元素含量及结构进行表征。结果表明:织物表面负载的石墨烯层数较少,且团聚现象不明显,采用电化学沉积法可成功地将石墨烯负载在棉织物上;当电沉积时间为90 min时,石墨烯-棉针织物电极材料的比电容为464.3 F/g,等效串联电阻为10.45 Ω,表现出良好的电容性、导电性、循环性能和柔韧性。

关键词: 石墨烯, 柔性电极材料, 液相剥离法, 电化学沉积法

Abstract:

In order to achieve better combination of graphene and fabric, flexible supercapacitors with foldable and good electrochemical properties were prepared, using ethanol and N, N-dimethylformamide as solvents and the flake graphite as a solute. Graphene solution was prepared by liquid phase stripping method, and graphene was loaded onto knitted fabric surface by electrochemical deposition method. The surface morphology, content and composition of the knitted fabric and the flexible electrode were analyzed by scanning electron microscopy and Fourier transform infrared spectrometry. Research results indicate that the number of graphene layers loaded on the surface of the fabric is smaller, the agglomeration is not obvious, and the graphene is loaded on the fabric successfully by electrochemical deposition. When the electrodeposition time is 90 min, the specific capacitance of graphene-fabric electrode material is 464.3 F/g, and the equivalent series resistance is 10.45 Ω, showing good capacitance, conductivity, cycle performance and flexibility.

Key words: graphene, flexible electrode material, liquid-phase stripping, electrochemical deposition

中图分类号: 

  • TS101.8

图1

预处理前后棉针织物的表面扫描电镜照片(×2 000)"

图2

不同电化学沉积时间GN-C电极的扫描电镜照片(×20 000)"

图3

GN-C电极材料的SEM照片和EDS能谱图"

图4

棉针织物和GN-C电极材料的红外光谱图"

图5

GN-C电极材料的电化学性能图"

图6

电解池的等效模型"

图7

GN-C电极的Nyquist图"

图8

GN-C电极的折叠性能"

[1] 张倩男. 战略性新兴产业与传统产业耦合发展研究[J]. 科技进步与对策, 2013(12):63-66.
ZHANG Qiannan. Research on the coupling development of strategic emerging industries and traditional indus-tries[J]. Science & Technology Progress and Polity, 2013(12):63-66.
[2] PANN Wenxia, ZHENG Yuhang, ZHENGN Dianyuan, et al. Fabrication of functionalized graphene-based MnO2 nanoflower through electrodeposition for high-performance supercapacitor electrodes[J]. Journal of The Electrochemical Society, 2016,163(6):D230-D238.
doi: 10.1149/2.0341606jes
[3] GUO F M, XU R Q, CUI X, et al. High performance of stretchable carbon nanotube-polypyrrole fiber supercapacitors under dynamic deformation and temperature variation[J]. Journal of Materials Chemistry, 2016,4(23):9311-9318.
[4] MOLINA J FERNÁNDEZ J INÉS J C, et al. lectrochemical characterization of reduced graphene oxide-coated polyester fabrics[J]. Electrochimica Acta, 2013,93:44-52.
doi: 10.1016/j.electacta.2013.01.071
[5] 张克勤, 杜德壮. 石墨烯功能纤维[J]. 纺织学报, 2016,37(10):153-157.
ZHANG Keqin, DU Dezhuang. Functional fibers based on graphene[J]. Journal of Textile Research, 2016,37(10):153-157.
[6] LAM D V, JO K, KIM C H, et al. Activated carbon textile via chemistry of metal extraction for supercapacitors[J]. ACS Nano, 2016,10(12):11351-11359.
doi: 10.1021/acsnano.6b06608 pmid: 28024376
[7] XU Mingsheng, YANG Xi, QIU Weiming, et al. Graphene uniformly decorated with gold nanodots: in situ synjournal, enhanced dispersibility and applica-tions[J]. Journal of Materials Chemistry, 2011,22(21):8096-8103.
[8] HUANG P, LETHIEN C, PINAUD S, et al. On-chip and freestanding elastic carbon films for micro-supercapacitors[J]. Science, 2016,351(6274):691.
pmid: 26912855
[9] MENG F, LU W, LI Q, et al. Graphene-based fibers: a review[J]. Adv Mater, 2015,27(35):5113-5131.
pmid: 26248041
[10] 李昱材, 张国英, 魏丹, 等. 金属电极电位与费米能级的对应关系[J]. 沈阳师范大学学报, 2007,25(1):25-27.
LI Yucai, ZHANG Guoying, WEI Dan, et al. Corresponding relationship between electrode potential and fermi level[J]. Journal of Shenyang Normal University, 2007,25(1):25-27.
[11] LIU Hongtao, ZHANG Lei, GUO Yunlong, et al. Reduction of graphene oxide to highly conductive graphene by Lawesson's reagent and its electrical applications[J]. Journal of Materials Chemistry C, 2013,18(1):3104.
[12] 于平平. 石墨烯/聚苯胺柔性复合材料的制备及其电化学性能研究[D]. 上海:东华大学, 2014: 34-35.
YU Pingping. Fabrication and electrochemical properties of graphene and polyaniline flexible composites[D]. Shanghai:Donghua University, 2014: 34-35.
[1] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[2] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[3] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[4] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[5] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[6] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[7] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[8] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[9] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[10] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[11] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[12] 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/ 石墨烯/ 棉织物复合电极的制及其电化学性能 [J]. 纺织学报, 2020, 41(01): 96-101.
[13] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[14] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[15] 高晶, 张俊, 赵泽阳, 李婉迪, 王佳珺, 王璐. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!