纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 147-152.doi: 10.13475/j.fzxb.20180302306

• 机械与器材 • 上一篇    下一篇

基于机器视觉的丝饼毛羽检测

景军锋(), 郭根   

  1. 西安工程大学 电子信息学院, 陕西 西安 710048
  • 收稿日期:2018-03-12 修回日期:2018-07-19 出版日期:2019-01-15 发布日期:2019-01-18
  • 作者简介:景军锋(1978—),男,教授,博士。主要研究方向为机器视觉与图像处理。E-mail: jingjunfeng0718@sina.com
  • 基金资助:
    国家自然科学基金项目(61301276);陕西省重点研发计划项目(2017GY-003)

Yarn packages hairiness detection based on machine vision

JING Junfeng(), GUO Gen   

  1. School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2018-03-12 Revised:2018-07-19 Online:2019-01-15 Published:2019-01-18

摘要:

为实现丝饼毛羽的自动检测,提出基于机器视觉的丝饼毛羽检测方法,通过寻找毛羽轮廓点中凸包位置实现丝饼毛羽检测。首先构建具有特定结构特征的卷积核,利用该卷积核对原始图像进行卷积运算,从而获取毛羽特征,并采用阈值处理对其进行二值化;然后对二值化后的毛羽进行轮廓检测,继而筛选轮廓点以减少运算时间;最后利用单方向凸包算法对满足条件的轮廓点进行检测,实现对丝饼毛羽的定位及计数。运用3类典型丝饼毛羽对检测方法进行验证,结果表明,该方法可有效地实现对丝饼毛羽准确定位并计数,且对不同背景的毛羽图片有较强的适应性。

关键词: 丝饼毛羽, 凸包检测, 卷积运算, 轮廓检测, 机器视觉

Abstract:

In order to realize the automatic detection of the hairiness of yarn packages, a method for detecting the hairiness of yarn packages based on machine vision was proposed. Firstly, the convolution kernel was constructed, and the hairiness characteristics were obtained by convolving the original image with the convolution kernel, and binarization was performed using threshold processing. Secondly, the contours of the binarized hairiness were detected, and then the contour points were screened to reduce the computing time. Finally, the unidirectional convex hull detection was applied to the outline points which meet the screening conditions, and then the hairiness of the yarn packages was located and counted. Three kinds of typical yarn packages were used to verify the method. The experimental results show that the method can position and count the hairiness number of the yarn packages accurately, and has strong adaptability to the hairiness images of different backgrounds.

Key words: yarn package hairiness, convex hull detection, convolution operation, contour detection, machine vision

中图分类号: 

  • TP391.4

图1

图像采集系统"

图2

检测流程"

图3

单方向凸包检测方法"

图4

毛羽分割对比 (a) Hairiness Ⅰ; (b) Hairiness Ⅱ; (c) Hairiness Ⅲ."

图5

毛羽检测结果 (a) Hairiness Ⅰ; (b) Hairiness Ⅱ; (c) Hairiness Ⅲ."

[1] 张清华, 张殿波. 石墨烯与纤维的高性能化[J]. 纺织学报, 2016,37(10):145-152.
ZHANG Qinghua, ZHANG Dianbo. Graphene and enhanced fibers[J]. Journal of Textile Research, 2016,37(10):145-152.
doi: 10.1177/004051756703700210
[2] 高哲, 蒋高明, 马丕波, 等. 碳纤维多轴向经编复合材料的应用与发展[J]. 纺织学报, 2013,34(12):144-151.
GAO Zhe, JIANG Gaoming, MA Pibo, et al. Application and development of carbon fiber multi-axial warp-knitted fabric reinforced composites[J]. Journal of Textile Research, 2013,34(12):144-151.
[3] 柳素景, 丁新波, 韩建. 羟基锡酸锌/Sb2O3对聚氯乙稀复合建筑膜材的协同阻燃性能[J]. 纺织学报, 2015,36(10):102-106.
LIU Sujing, DING Xinbo, HAN Jian. Synergic flame retardance of zinc hydroxy stannate/Sb2O3 on polyvingl chloride composite building membrane[J]. Journal of Textile Research, 2015,36(10):102-106.
[4] 徐旻. 纱线质量的全面检测与综合评定[J]. 棉纺织技术, 2010,38(6):24-26.
XU Min. Comprehensive detection and evaluation of yarn quality[J]. Cotton Textile Technology, 2010,38(6):24-26.
[5] SUN T H, TSENG C C, CHEN M S. Electric contacts inspection using machine vision[J]. Image & Vision Computing, 2010,28(6):890-901.
[6] PALOMARES J M, GONZALEZ J, ROS E, et al. General logarithmic image processing convolution[J]. IEEE Transactions on Image Processing, 2006,15(11):3602-3608.
doi: 10.1109/tip.2006.881967 pmid: 17076418
[7] LI B, HU J. Design and implementation of image effects based on convolution algorithm[C]// 2013 5th International Conference on Computational & Information Sciences. Shiyang: IEEE, 2013: 144-147.
[8] GUPTA A, NAG A, SAVANI J, et al. Evolutionary approach and spline interpolation for contrast enhancement[C]// 2013 IEEE 2nd International Conference on Image Information Processing. Shimla: IEEE, 2013: 181-186.
[9] ANGELOVA D, MIHAYLOVA L, PETROV N, et al. Extended object tracking with convolution particle filtering[C]// 2012 6th IEEE International Conference Intelligent Systems. Sofia: IEEE, 2012: 96-101.
[10] WANG Z, ZHANG J. Classification smoothing filtering algorithm based on edge information[C]// Information Technology, Networking, Electronic and Automation Control Conference, IEEE. Chongqing: IEEE, 2016: 366-370.
[11] MAHMOODI S. Edge detection filter based on mumford-Shah green function[J]. Siam Journal on Imaging Sciences, 2012,5(1):343-365.
doi: 10.1137/100811349
[12] MITCHELL H B, SCHAEFER P A. A fuzzy noise-smoothing filter[J]. International Journal of Intelligent Systems, 2015,15(4):303-315.
doi: 10.1002/(ISSN)1098-111X
[13] XU X, MILLER E L, CHEN D, et al. Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images[J]. IEEE Transactions on Image Processing, 2004,13(2):238-247.
doi: 10.1109/tip.2004.823827 pmid: 15376944
[14] SON J W, PARK S B, KIM K J. A convolution kernel method for color recognition[C]// 2007 6th International Conference on Advanced Language Processing and Web Information Technology. Luoyang: IEEE, 2007: 242-247.
[15] KAUR R. Modified watershed transform using convolution filtering for image segmentation[J]. International Journal of Engineering Sciences & Research Technology, 2014,3(8):449-454.
[16] GAO L, YAN Y, LU G. Contour-based image segmentation for on-line size distribution measurement of pneumatically conveyed particles[C]// Instrumentation and Measurement Technology Conference. Binjiang: IEEE, 2011: 1-5.
[17] 李必栋, 闫浩文, 王中辉, 等. 坐标排序的离散点凸包生成算法[J]. 测绘科学, 2017,42(2):14-17.
LI Bidong, YAN Haowen, WANG Zhonghui, et al. Algorithm of convex hull generation for point sets based on sorted coordinates[J]. Science of Surveying and Mapping, 2017,42(2):14-17.
[18] 刘凯, 夏苗, 杨晓梅. 一种平面点集的高效凸包算法[J]. 工程科学与技术, 2017,49(5):109-116.
LIU Kai, XIA Miao, YANG Xiaomei. An effective 2D convex hull algorithm[J]. Advanced Engineering Sciences, 2017,49(5):109-116.
[1] 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163.
[2] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[3] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
[4] 王文胜, 李天剑, 冉宇辰, 卢影, 黄民. 筒子纱纱笼纱杆的定位检测方法[J]. 纺织学报, 2020, 41(03): 160-167.
[5] 金守峰, 林强强, 马秋瑞, 张浩. 基于BP 神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(02): 69-76.
[6] 景军锋, 张君扬, 张缓缓, 苏泽斌. 梯度空间下的丝饼表面缺陷检测[J]. 纺织学报, 2020, 41(02): 44-51.
[7] 孙卫红 阮棉奖 邵铁锋 梁曼. 基于机器视觉的生丝抱合性能检测方法[J]. 纺织学报, 2019, 40(08): 164-168.
[8] 景军锋 张星星. 基于机器视觉的玻璃纤维管纱毛羽检测[J]. 纺织学报, 2019, 40(05): 157-162.
[9] 徐洋 朱治潮 盛晓伟 余智祺 孙以泽. 基于机器视觉的鞋面特征点自动识别改进方法[J]. 纺织学报, 2019, 40(03): 168-174.
[10] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[11] 杨松林 马帅 丁朝鹏 范红丽 薛欢欢. 应用机器视觉的织物表面绒毛率测试系统[J]. 纺织学报, 2017, 38(06): 118-123.
[12] 蒋双歌 王蕾 王静 刘建立 高卫东. 织物折皱回复的各向异性表征[J]. 纺织学报, 2016, 37(06): 42-47.
[13] 李文羽 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014, 35(3): 158-0.
[14] 王蕾, 刘建立, 高卫东. 基于机器视觉的织物洗涤后尺寸稳定性评价[J]. 纺织学报, 2012, 33(7): 43-47.
[15] 霍铖宇 华强 卢达 范龙保 李新 徐刚. 基于虚拟仪器的针织机械用高速电磁阀测试系统[J]. 纺织学报, 2011, 32(10): 134-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!