纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 96-101.doi: 10.13475/j.fzxb.20180305106

• 染整与化学品 • 上一篇    下一篇

介质阻挡放电对水龙带增强层黏结性能的影响

孙雷1, 蔡莹莹1, 叶伟1,2, 季涛1,2, 孙启龙1,2()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
  • 收稿日期:2018-03-22 修回日期:2018-08-18 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 孙启龙
  • 作者简介:孙雷(1992—),男,硕士生。主要研究方向为纤维表面改性。
  • 基金资助:
    江苏省产学研前瞻性联合研究项目(BY2016053-03);常熟市科技计划项目(CG201601)

Influence of dielectric barrier discharge on adherent property of hose reinforcement layer

SUN Lei1, CAI Yingying1, YE Wei1,2, JI Tao1,2, SUN Qilong1,2()   

  1. 1. School of Textiles and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong, Jiangsu 226091, China
  • Received:2018-03-22 Revised:2018-08-18 Online:2019-03-15 Published:2019-03-15
  • Contact: SUN Qilong

摘要:

针对水龙带增强层高强涤纶管状织物与三元乙丙橡胶内衬黏结性能差的问题,采用介质阻挡放电(DBD)等离子体对高强涤纶管状织物表面进行处理,研究了处理时间对纤维表面形貌和化学组成、丝束断裂强力、织物芯吸高度及剥离强度的影响。结果表明:经DBD等离子体处理后,高强涤纶表面产生明显的刻蚀痕迹,纤维表面极性官能团增加,织物芯吸高度增加,丝束断裂强力随处理时间的延长而下降;处理时间为60 s时,强度损失率为3.9%;处理后高强涤纶管状织物与三元乙丙橡胶内衬的黏结性能得到显著改善,处理时间为60 s时,剥离强度提升35.1%。

关键词: 介质阻挡放电, 水龙带增强层, 高强涤纶管状织物, 黏结性能, 剥离强度

Abstract:

In order to improve the adherent property between fire-fighting hose reinforcement layer of high strength polyester tubular fabric and an ethylene propylene diene monomer(EPDM) lining, the tubular fabrics were treated by dielectric barrier discharge(DBD) plasma. The influences of DBD plasma treatment time on the properties of fabrics such as tensile strength, fabric wicking height, surface morphology, surface chemical composition and adherent property were studied. The scanning electron microscopy images show that obvious etching marks appear in the surface of the fiber after plasma treatment. X-ray photonic spectroscopy analysis shows that the oxygen and nitrogen polar functional groups are added to the surface of fibers. The wicking height increases with the increase of treatment time. The breaking strength of the polyester tows decreases with the increase of the treatment time, and when treatment time is 60 s, the strength loss rate is 3.9%. After treatment, the peeling strength between the tubular fabric and EPDM is improved greatly, and when treatment time is 60 s, the peeling strength is increased by 35.1%.

Key words: dielectric barrier discharge, fire-fighting hose reinforcement layer, high strength polyester tubular fabric, adherent property, peel strength

中图分类号: 

  • TS102.6

图1

介质阻挡放电等离子体设备示意图"

图2

等离子体处理及剥离、芯吸、SEM、XPS和拉伸实验试样"

图3

DBD等离子体处理前后高强涤纶纤维表面形貌"

图4

织物芯吸高度与DBD等离子体处理时间的关系"

图5

高强涤纶的XPS能谱"

表1

DBD等离子体处理前后涤纶表面各元素含量变化"

样品 元素组成/% O与C
原子比
N与C
原子比
O+N与C
原子比
C O N
未处理 86.66 12.76 0.58 0.147 0.007 0.154
处理后 84.61 14.49 0.90 0.171 0.011 0.182

表2

DBD等离子体处理前后涤纶表面官能团含量变化"

基团种类 基团含量/%
未处理 处理后
C─C/C═C/C─H 62.10 53.80
─C─O─ 25.70 33.00
C─O─C/C─N 8.80 9.50
O═C─O 3.40 3.70

图6

不同DBD等离子体处理时间下的高强涤纶经向丝束断裂强力"

表3

不同处理时间下的高强涤纶经向丝束强力损失率"

处理时间/s 强力损失率/%
0 0
30 0.5
60 3.9
90 7.9
120 10.3

图7

剥离强度与DBD等离子体处理时间的关系"

[1] 杨小侠. 亚麻水龙带织物的设计与性能[J]. 上海纺织科技, 2008,36(7):47-49.
YANG Xiaoxia. Design of linen hose fabric and its performance[J]. Shanghai Textile Science & Technology, 2008,36(7):47-49.
[2] KČUEROVÁ G, STRUNK J, MUHLER M, et al. Effect of titania surface modification of mesoporous silica SBA-15 supported Au catalysts: activity and stability in the CO oxidation reaction[J]. Journal of Catalysis, 2017,356:214-228.
doi: 10.1016/j.jcat.2017.09.017
[3] FU Y, ZHANG Y, LI G, et al. NO removal activity and surface characterization of activated carbon with oxidation modification[J]. Journal of the Energy Institute, 2017,90:813-823.
doi: 10.1016/j.joei.2016.06.002
[4] LIU Y, ZHANG R, LIAN Z, et al. Yeast cell surface display for lipase whole cell catalyst and its appli-cations[J]. Journal of Molecular Catalysis B Enzymatic, 2014,106(4):17-25.
doi: 10.1016/j.molcatb.2014.04.011
[5] 代国亮, 肖红, 施楣梧. 涤纶表面亲水改性研究进展及其发展方向[J]. 纺织学报, 2015,36(8):156-164.
DAI Guoliang, XIAO Hong, SHI Meiwu. Research progress and development direction of surface hydrophilic modification of polyester fiber[J]. Journal of Textile Research, 2015,36(8):156-164.
[6] KO J, CHO K, HAN S W, et al. Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting[J]. Colloids & Surfaces B Biointerfaces, 2017,158:287-294.
doi: 10.1016/j.colsurfb.2017.07.017 pmid: 28711015
[7] RAŽIĆ S E ĆUNKO R BAUTISTA L, et al. Plasma effect on the chemical structure of cellulose fabric for modification of some functional properties[J]. Procedia Engineering, 2017,200:333-340.
[8] RANI K V, SARMA B, SARMA A, et al. Plasma sputtering process of copper on polyester/silk blended fabrics for preparation of multifunctional properties[J]. Vacuum, 2017,146:206-215.
[9] PARVINZADEH M, EBRAHIMI I. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone[J]. Applied Surface Science, 2011,257(9):4062-4068.
[10] 赵远涛, 张若兵, 王黎明, 等. 双极性脉冲电压下介质阻挡放电及其涤纶表面改性[J]. 高电压技术, 2009,35(9):2238-2242.
ZHAO Yuantao, ZHANG Ruobing, WANG Liming, et al. Application of bipolar pulsed power to ADBD and terylene surface modification[J]. High Voltage Engineering, 2009,35(9):2238-2242.
[11] KHATAEE A, SAJJADI S, HASANZADEH A, et al. One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process.[J]. Journal of Environmental Management, 2017,199:31-45.
doi: 10.1016/j.jenvman.2017.04.095 pmid: 28525809
[12] SPECKMANN F W, MÜLLER D, KÖHLER J, et al. Low pressure glow-discharge methanation with an ancillary oxygen ion conductor[J]. Journal of CO2 Utilization, 2017,19:130-136.
[13] REN Y, XU L, WANG C, et al. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics[J]. Applied Surface Science, 2017,426:612-621.
doi: 10.1016/j.apsusc.2017.07.211
[14] 唐久英. 低温等离子体技术在超高相对分子质量聚乙烯纤维表面改性中的应用[J]. 高科技纤维与应用, 2006,31(5):31-36.
TANG Jiuying. Application of low temperature plasma in surface modifacition of ultra high molecular weight fibers[J]. Hi-Tech Fiber & Application, 2006,31(5):31-36.
[15] MOLINA J, FERNÁNDEZ J, FERNANDES M, et al. Plasma treatment of polyester fabrics to increase the adhesion of reduced graphene oxide[J]. Synthetic Metals, 2015,202(9):110-122.
[16] 任煜, 张银, 王晓娜, 等. 空气介质阻挡放电对超高分子量聚乙烯纤维表面性能及粘结力的影响研究[J]. 高分子学报, 2016(10):1439-1446.
REN Yu, ZHANG Yin, WANG Xiaona, et al. Surface properties and adhesion force of air dielectric barrier discharge treated UHMWPE fibers[J]. Acta Polymerica Sinica, 2016(10):1439-1446.
[17] ZHANG C, ZHAO M, WANG L, et al. Effect of atmospheric-pressure air/He plasma on the surface properties related to ink-jet printing polyester fabric[J]. Vacuum, 2017,137:42-48.
[18] WANG C, LÜ J, REN Y, et al. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement[J]. Applied Surface Science, 2015,359:196-203.
[19] MEHMOOD T, KAYNAK A, DAI X J, et al. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion[J]. Materials Chemistry & Physics, 2014,143(2):668-675.
[20] KARAHAN H A, ÖZDOĞAN E. Improvements of surface functionality of cotton fibers by atmospheric plasma treatment [J]. Fibers & Polymers, 2008,9(1):21-26.
[1] 张欢, 闫俊, 王晓武, 焦安东, 李红, 郑来久, 何婷婷. 低温等离子体在涤纶表面改性中的应用[J]. 纺织学报, 2019, 40(07): 103-107.
[2] 王春莹;王潮霞. 常压介质阻挡放电对涤纶春亚纺织物的表面改性[J]. 纺织学报, 2010, 31(7): 97-101.
[3] 唐丽华;任婉婷;李鑫;王荣民. 低温等离子体亲水改性聚丙烯熔喷非织造布[J]. 纺织学报, 2010, 31(4): 30-34.
[4] 唐晓亮.;任忠夫.;李驰;王良;邱高.. 常压等离子体表面改性涤纶织物[J]. 纺织学报, 2007, 28(8): 63-65.
[5] 杜文琴;侯忠良;齐宏进. 介质阻挡放电改善聚丙烯纤维润湿性能的衰退规律[J]. 纺织学报, 2007, 28(6): 32-34.
[6] 吴会峰;郭颖;张菁;俞建勇. 大豆蛋白纤维常压等离子体表面改性研究[J]. 纺织学报, 2004, 25(05): 15-16.
[7] 殷英贤;王懽;张建春;郭玉海. 聚四氟乙烯-聚氨酯复合膜的工艺探讨[J]. 纺织学报, 2004, 25(04): 36-37.
[8] 马会英;王建坤;胡方田. 空气变形丝对涂层织物剥离强度的影响[J]. 纺织学报, 2002, 23(01): 66-67.
[9] 钱程*;储才元***;张玉林**. 粘合复合土工布的开发和性能[J]. 纺织学报, 2001, 22(01): 20-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!