纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 7-11.doi: 10.13475/j.fzxb.20180307005

• 纤维材料 • 上一篇    下一篇

静电纺抗菌聚丙烯腈纳米纤维膜制备及其性能

黄程博, 任学宏()   

  1. 江南大学 纺织服装学院, 江苏 无锡 214122
  • 收稿日期:2018-03-29 修回日期:2019-01-03 出版日期:2019-05-15 发布日期:2019-05-21
  • 通讯作者: 任学宏
  • 作者简介:黄程博(1993—),女,硕士。主要研究方向为纺织品的抗菌性功能整理。
  • 基金资助:
    中央高校基础研究经费项目(JUSRP51722B)

Synthesis and properties of antibacterial polyacrylonitrile nanofiber membrane

HUANG Chengbo, REN Xuehong()   

  1. School of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2018-03-29 Revised:2019-01-03 Online:2019-05-15 Published:2019-05-21
  • Contact: REN Xuehong

摘要:

为制备不易分解的抗菌卤胺高分子并将其应用于抗菌聚丙烯腈纳米纤维膜的制备,将海因(DMH)合成一种含有双键的海因单体3-(4'-乙烯苄基)-5,5-二甲基海因 (VBDMH),然后将VBDMH与甲基丙烯酸甲酯(MMA)通过聚合反应合成一种抗菌型卤胺高分子前驱体,并将其与聚丙烯腈进行共混,通过静电纺丝技术制备抗菌聚丙烯腈纳米纤维膜。借助扫描电子显微镜、傅里叶变换红外光谱仪、核磁共振仪以及元素分析仪等对卤胺高分子前驱体以及抗菌聚丙烯腈纳米纤维膜进行表征与分析。结果表明:通过乳液聚合获得的卤胺高分子前驱体直径分布均匀,离散度低;抗菌聚丙烯腈纳米纤维膜可在30 min内使大肠杆菌和金黄色葡萄球菌失活,相对于原膜抗菌性提高20%~50%。

关键词: 纳米颗粒, 静电纺丝, 聚丙烯腈, 卤胺高分子, 抗菌性能

Abstract:

In order to prepare refractory antibacterial N-halamine polymer and apply in antibacterial polyacrylonitrile nanofiber membrane, 5,5-dimethylhydantoin(DMH)was selected to synthesize 3-(4'-vinylbenzyl)-5,5-dimethylhydantoin (VBDMH). Then VBDMH and methyl methacrylate (MMA) were polymerized to synthesize an antibacterial N-halamine polymer precusor. And antibacterial polyacrylonitrile nanofiber membrane was prepared from the polymer and polyacrylonitrile by mixing and electrospinning. Scanning electron microscopy. Fourier transform infrared spectroscopy, nuclear magnetic resonance and element analysis were adopts to characterize and analyze the polymer precusor and antibacterial polyacrylonitrile nanofiber membrane. The results showed that the diameter distribution of polymer obtained by emulsion polymerization is uniform, and the dispersion degree is low. The antibacterial test results show that the antibacterial nanofiber membrane can cause the inactivation of S. aureus and E. coli within 30 min. And the antibacterial property is improved by 20%-50%, compared with the original membrane.

Key words: nanoparticle, electrospinning, polyacrylonitrile, N-halamine polymer, antibacterial

中图分类号: 

  • TB34

图1

不同反应比例下卤胺高分子前驱体的SEM照片(×10 000)"

表1

不同比例的卤胺高分子前驱体中的元素比例"

样品编号 C含量/% N含量/% nm
P10∶90 61.16 4.90 1∶3.00
P20∶80 62.13 5.53 1∶2.45
P30∶70 62.67 6.20 1∶1.92
P40∶60 63.73 7.71 1∶1.05

图2

卤胺高分子前驱体的结构式和核磁谱图"

图3

氯化前后纳米纤维的SEM照片(×5 000)"

表2

纳米纤维膜的抗菌效果"

试样 接触
时间/
min
金黄色葡萄球菌 大肠杆菌
减少量/
%
对数
减少值
减少量/
%
对数减
少值
氯化前 30 81.14 0.73 51.76 0.31
氯化后 1 79.83 0.70 53.10 0.32
5 81.79 0.74 54.44 0.34
10 90.89 1.04 84.59 0.81
30 99.72 2.55 100.00 6.00
[1] LIANG J, CHEN Y, BARNES K, et al. N-halamine/quat siloxane copolymers for use in biocidal coatings[J]. Biomaterials, 2006,27(11):2495-2501.
[2] 左华江, 温婉华, 吴丁财, 等. 季铵盐类抗菌聚合物的研究现状[J]. 化工进展, 2013(10):2416-2422.
ZUO Huajiang, WEN Wanhua, WU Dingcai, et al. Research status of antibacterial polymeric quternary ammonium compounds[J]. Chemical Industry and Engineering Progress, 2013(10):2416-2422.
[3] SHAO Wei, LIU Xiufeng, MIN Huihua, et al. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite[J]. ACS Applied Materials & Interfaces, 2015,7(12):6966-6973.
pmid: 25762191
[4] MENDES A C, STEPHANSEN K, CHRONAKIS I S. Electrospinning of food proteins and polysaccharides[J]. Food Hydrocolloids, 2017,68(Supplement C):53-68.
[5] WU Jing, WANG Nü, ZHAO Yong, et al. Electrospinning of multilevel structured functional micro/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013,1(25):7290-7305.
[6] MIAO Yue'e, FAN Wei, CHEN Dan, et al. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning[J]. ACS Applied Materials & Interfaces, 2013,5(10):4423-4428.
[7] JI Wenling, WEI Hengyong, CUI Yi, et al. Facile synjournal of porous forsterite nanofibres by direct electrospinning method based on the Kirkendall effect[J]. Materials Letters, 2018,211(Supplement C):319-322.
[8] LAN Tian, WANG Weiyuan. Electrospinning fibrous films doped with a series of luminescent copper complexes: synjournal, characterization and oxygen sensing performance comparison[J]. Sensors and Actuators B: Chemical, 2018,254:81-92.
[9] CHEN Lei, WU Feng, YANG lingli, et al. Robustandelastic superhydrophobic breathable fibrous membranewith in situ grown hierarchical structures[J]. Journal of Membrane Science, 2018,547(Supple-ment C):93-98.
[10] HARDIANSYAH A, TANADI H, YANG M C, et al. Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers[J]. Journal of Polymer Research, 2015,22(4):59-69.
[11] 陈锋, 姬忠礼, 齐强强. 静电纺聚丙烯腈纳米纤维复合滤材的制备及其气液过滤性能[J]. 纺织学报, 2017,38(9):8-13.
CHEN Feng, JI Zhongli, QI Qiangqiang. Preparation and gas-liquid filtration performance of composite filters of electrospun polyacrylonitrile nanofibers[J]. Journal of Textile Research, 2017,38(9):8-13.
[12] 李晴碧, 刘琴, 顾迎春, 等. 复合静电纺超细聚丙烯腈纳米纤维的制备[J]. 纺织学报, 2017,38(11):16-21.
LI Qingbi, LIU Qin, GU Yingchun, et al. Preparation of ultrafine polyacrylonitrile nanofibers via composite electrospinning[J]. Journal of Textile Research, 2017,38(11):16-21.
[13] REN X H, KOCER H B, WORLEY S D. Biocidal nanofibers via electrospinning[J]. Journal of Applied Polymer Science, 2013,127(4):3192-3197.
[14] REN Xuehong, ZHU Changyun, LEI Kou, et al. Acyclic N-halamine polymeric biocidal films[J]. Journal of Bioactive and Compatible Polymers, 2010,25(4):392-405.
[15] KANG Jing, HAN Jinsong, GAO Yangyang, et al. Unexpected enhancement in antibacterial activity of N-halamine polymers from spheres to fibers[J]. ACS Applied Materials & Interfaces, 2015,31(7):17516-17526.
[16] REN X H, KOU L, KOCER H B, et al. Antimi crobial modification of polyester by admicellar polymeri-zation[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2009,89(2):475-480.
[1] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[2] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[3] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[4] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[5] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[6] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[7] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[8] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[9] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[10] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[11] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[12] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[13] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[14] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[15] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!