纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 133-138.doi: 10.13475/j.fzxb.20180400506

• 服装工程 • 上一篇    下一篇

防火服用蜂窝夹芯结构织物的热防护性能测评

杜菲菲1, 李小辉1,2,3(), 张思严1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.同济大学 上海国际设计创新研究院, 上海 200080
    3.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2018-04-02 修回日期:2018-11-21 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 李小辉
  • 作者简介:杜菲菲(1994—),女,硕士生。主要研究方向为功能防护服装。
  • 基金资助:
    国家自然科学基金资助项目(51703026)

Evaluation of thermal protection performance of honeycomb sandwich structure fabric for fireproof clothing

DU Feifei1, LI Xiaohui1,2,3(), ZHANG Siyan1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Institute of Design and Innovation,Tongji University, Shanghai 200080, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education,Donghua University, Shanghai 200051, China
  • Received:2018-04-02 Revised:2018-11-21 Online:2019-03-15 Published:2019-03-15
  • Contact: LI Xiaohui

摘要:

针对当前防火服普遍存在的笨重、闷热等问题,提出采用隔热耐高温、吸湿透气的蜂窝夹芯结构来改善其功能防护与热湿舒适性能。通过对蜂窝结构内在传热机制的分析,设计和制备了7种不同的蜂窝结构,选取当前典型的各层面料作为实验试样,综合考虑织物面密度、蜂窝夹芯结构种类设计了21种实验方案,并利用热防护性能测试仪对其进行热防护性能测评;进一步考察蜂窝结构的边长、壁厚、芯厚对防火服用织物热防护性能的影响规律。结果表明:蜂窝夹芯结构质轻且能满足热防护性能的要求,蜂窝结构的边长越小,壁厚越大,芯厚越大,织物的热防护性能值(TPP)越大,热防护性能越好。

关键词: 防火服, 蜂窝夹芯结构, 热防护性能, 热湿舒适性

Abstract:

In view of the heaviness and stuffiness of current fireproof clothing, a honeycomb sandwich structure with heat insulation, high temperature resistance, moisture absorption and ventilation was proposed to improve its performance of functional protection and heat and moisture comfort. By analyzing the inherent heat transfer mechanism of honeycomb sandwich structure, 7 different kinds of honeycomb sandwich structures were designed and fabricated. The current typical layers of fabrics were chosen as the experimental samples. Taking into account of the fabric weight and the sorts of honeycomb sandwich structure, 21 kinds of experimental schemes were designed. Thermal protection performance (TPP) tester was used to evaluate the thermal protection performance, and further the effect of side length, wall thickness and core thickness of honeycomb sandwich structure on thermal protection performance of fireproof clothing was investigated. Experimental results show that the honeycomb sandwich structure is light and can meet the requirements of thermal protection performance. The smaller the side length, the larger the wall thickness and the larger the core thickness, the larger the TPP value of the fabric and the better the thermal protection performance.

Key words: fireproof clothing, honeycomb sandwich structure, thermal protection performance, thermal-wet comfort

中图分类号: 

  • TS941.73

表1

面料试样及其基本性能"

面料
编号
成分 颜色 面密度/
(g·m-2)
厚度/
mm
透气率/
(L·m-2·s-1)
A Nomex?? IIIA 藏青色 211.6 0.65 206.57
B I-70/聚四氟乙烯 浅黄+白色 106.1 0.66 0.84
C1 I-70毡Nomex?? 浅黄 72.3 0.81 1 658.02
C2 I-120毡Nomex?? 浅黄 128.4 1.28 1 087.65
C3 I-150毡Nomex?? 浅灰 151.3 1.65 988.50
D 阻燃粘胶 浅灰 125.6 0.61 1 262.45

图1

芯子层蜂窝结构示意图"

表2

蜂窝孔形结构参数"

蜂窝孔形
结构编号
边长/
mm
壁厚/
mm
质量减轻
百分比/%
E1 实心 实心 0
E2 3 5.2 25.1
E3 3 2.6 44.2
E4 6 5.2 44.4
E5 6 2.6 64.2
E6 9 5.2 56.2
E7 9 7.8 44.4

表3

实验方案设计"

实验
编号
外层 防水透
气层
隔热
舒适
蜂窝孔形
结构
1 A B C1 D E1
2 A B C1 D E2
3 A B C1 D E3
4 A B C1 D E4
5 A B C1 D E5
6 A B C1 D E6
7 A B C1 D E7
8 A B C2 D E1
9 A B C2 D E2
10 A B C2 D E3
11 A B C2 D E4
12 A B C2 D E5
13 A B C2 D E6
14 A B C2 D E7
15 A B C3 D E1
16 A B C3 D E2
17 A B C3 D E3
18 A B C3 D E4
19 A B C3 D E5
20 A B C3 D E6
21 A B C3 D E7

图2

热防护性能测试仪示意图"

表4

蜂窝芯子层面密度"

蜂窝孔形结构 C1 C2 C3
E1 72.3 128.0 151.0
E2 54.2 96.0 113.3
E3 40.2 71.2 84.0
E4 40.2 71.2 84.0
E5 25.9 45.8 54.1
E6 31.7 56.1 66.1
E7 40.2 71.2 84.0

图3

蜂窝边长对TPP的影响"

图4

蜂窝壁厚对TPP值的影响"

图5

蜂窝芯厚对TPP值的影响"

[1] 崔琳琳. 国内外灭火消防服发展现状及趋势[J]. 天津纺织科技, 2016(2):3-5.
CUI Linlin. Development status and trend of fire fighting and fire-fighting clothing at home and abroad[J]. Tianjin Textile Science & Technology, 2016(2):3-5.
[2] HE H, YU Z C, SONG G. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. Journal of The Textile Institute, 2016,7(8):1030-1036.
[3] ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006,24:465-485.
[4] 漆政昆, 张和平, 黄冬梅, 等. 消防服用织物材料热湿舒适性综合评价[J]. 中国安全科学学报, 2012,22(4):132-138.
QI Zhengkun, ZHANG Heping, HUANG Dongmei, et al. Comprehensive evaluation of thermal and moisture comfortableness of fabric for firefighter protective clothing[J]. Journal of Chinese Safety Science, 2012,22(4):132-138.
[5] LK McCarthy, MARZO M Di. The application of phase change material in fire fighter protective clothing[J]. Fire Technology, 2012,48:841-864.
doi: 10.1007/s10694-011-0248-3
[6] 崔志英, 袁晓云, 马春杰. 附加相变材料的消防服多层织物性能研究[J]. 产业用纺织品, 2014(7):10-13.
CUI Zhiying, YUAN Xiaoyun, MA Chunjie. Evalution of the performance of firefighter protective clothing with the addition of phase change material[J]. Technical Textiles, 2014(7):10-13.
[7] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials in fire-fighting suit[J]. Journal of Textile Research, 2014,35(8):124-132.
doi: 10.1177/004051756503500205
[8] 李红燕, 张渭源. 消防服用织物的阻燃性能及其TPP值[J]. 纺织学报, 2008,29(5):84-88.
LI Hongyan, ZHANG Weiyuan. Flame retardancy and TPP value of fire-fighting wearable fabric[J]. Journal of Textile Research, 2008,29(5):84-88.
[9] QI Zhengkun, HUANG Dongmei, HE Song, et al. Thermal protective performance of aerogel embedded firefighter's protective clothing[J]. Journal of Engineered Fibers & Fabrics, 2013,8(2):134-139.
[10] 张志华, 王文琴, 祖国庆, 等. SiO2气凝胶材料的制备、性能及其低温保温隔热应用[J]. 航空材料学报, 2015,35(1):87-96.
ZHANG Zhihua, WANG Wenqin, ZU Guoqing, et al. Silica aerogel materials: preparation, properties, and applications in low-temperature thermal insulation[J]. Journal of Aeronautical Materials, 2015,35(1):87-96.
[11] 曹喜川. 蜂窝结构等效分析及空间结构热控制研究[D]. 西安: 西安电子科技大学, 2013: 58-59.
CAO Xichuan. A study for honeycomb structure equivalent and thermal control of spatial structure[D]. Xi'an: Xidian University, 2013: 58-59.
[12] 吴林志, 泮世东. 夹心结构的设计及制备现状[J]. 中国材料进展, 2009,28(4):40-45.
WU Linzhi, PAN Shidong. Survey of design and manufacturing of sandwich structures[J]. Material Progress in China, 2009,28(4):40-45.
[13] W Dafang, Z Liming, P Bing, et al. Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments[J]. Experimental Heat Transfer, 2016,29(1):53-77.
doi: 10.1080/08916152.2014.940433
[14] 樊卓志, 孙勇, 段永华, 等. 金属蜂窝板参数对其传热性能的影响[J]. 材料导报, 2013,27(8):147-151.
FAN Zhuozhi, SUN Yong, DUAN Yonghua, et al. Influence of metallic honeycomb parameters on its heat transmission performance[J]. Materials Review, 2013,27(8):147-151.
[15] 徐兰娣, 戴国定, 杨晓华, 等. 消防员防护装备用织物的热防护性能研究[J]. 消防科学与技术, 2008(5):339-343.
XU Landi, DAI Guoding, YANG Xiaohua, et al. Research on the thermal protective performance of the fabric materials used in fireman personal equipment[J]. Fire Science and Technology, 2008 (5):339-343.
[1] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[2] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[3] 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181.
[4] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[5] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[6] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123.
[7] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[8] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[9] 张泓月, 李小辉. 热防护服用织物蜂窝夹芯结构的辐射热性能测评[J]. 纺织学报, 2019, 40(10): 147-151.
[10] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[11] 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152.
[12] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[13] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[14] 王诗潭 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10): 153-159.
[15] 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!