纺织学报 ›› 2018, Vol. 39 ›› Issue (10): 22-27.doi: 10.13475/j.fzxb.20180402906
摘要:
为改善纤维素在氢氧化钠(NaOH)水溶液中的溶解性能,通过醚化改性制备了低取代羟乙基纤维素(HEC),并借助光学显微镜、核磁共振仪、差热扫描量热仪和透射电子显微镜等研究了HEC在质量分数为8%的NaOH水溶液中的溶解行为及溶解机制。结果表明:低温下NaOH溶剂和水分子可结合形成尺寸合适、结构稳定的NaOH水合分子,与HEC大分子上的羟基键合形成HEC-NaOH-H2O缔合结构,切断了HEC大分子间氢键,HEC直接溶解;醚化改性后亲水性侧链的引入减弱了分子间作用力,增强了HEC与NaOH水合分子之间的作用强度,增强了缔合结构稳定性,促进了HEC在NaOH溶剂中的良好溶解;沿纤维长度方向HEC最外层膜溶胀成球形并逐渐破裂溶解,最终以长度为微米级、宽度为10~80 nm的微纤维形式分散在溶剂中。
[1] | FINK H, WEIGEL P, PURZ H, et al. Structure formation of regenerated cellulose materials from NMMO-solutions[J]. Progress in Polymer Science, 2001, 26(9): 1473-1524. |
[2] | ZHU S, WU Y, CHEN Q, et al. Dissolution of cellulose with ionic liquids and its application: a mini-review[J]. Green Chemistry, 2006, 37(30): 325-327. |
[3] | ISOGAI A, ATALLA R. Dissolution of cellulose in aqueous NaOH solutions[J]. Cellulose, 1998, 5(4): 309-319. |
[4] | XIONG B, ZHAO P, HU K, et al. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea[J]. Cellulose, 2014, 21(3): 1183-1192. |
[5] | Yan L, Chen J, Bangal P. Dissolving cellulose in a NaOH/thiourea aqueous solution: a topochemical investigation[J]. Macromolecular Bioscience, 2007, 7(9-10): 1139-1148. |
[6] | Fu F, Zhou J, Zhou X, Zhang L, Li D, Kondo T. Green method for production of cellulose multifilament from cellulose carbamate on a pilot scale[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2363-2370. |
[7] | GUO Y, ZHOU J, ZHANG L. Dynamic viscoelastic properties of cellulose carbamate dissolved in NaOH aqueous solution[J]. Biomacromolecules, 2011, 12(5): 1927-1934. |
[8] | LI D, ZHOU X, YANG J, et al. Spinnability of low-substituted hydroxyethylcellulose sodium hydroxide aqueous solutions[J]. Journal of Applied Polymer Science, 2010, 117(2): 767-774. |
[9] | WANG W, LI F, YU J, et al. Structure and properties of novel cellulose-based fibers spun from aqueous NaOH solvent under various drawing conditions. Cellulose, 2015, 22(2): 1333-1345. |
[10] | LI F, WANG W, WANG X, et al. Changes of structure and property of alkali soluble hydroxyethyl celluloses (HECs) and their regenerated films with the molar substitution.[J]. Carbohydrate Polymers, 2014, 114(114):206-212. |
[11] | IRENE N, WOLFGANG W, BURKART P, et al. Characterization of cellulose and cellulose derivatives in solution by high resolution carbon-13 NMR spectrometry. Progress in Polymer Science, 1994, 19(1): 29-78 |
[12] | EGAL M, BUDTOVA T, NAVARD P. Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 oC and the limit of cellulose dissolution[J]. Biomacromolecules, 2007, 8(7): 2282-2287. |
[13] | ROY C. Etude de mélanges de cellulose dans des solutions aqueuses de soude[D]: école Nationale Supérieure des Mines de Paris, 2002. |
[14] | WANG W, LI F, YU J, et al. A thermal behavior of low-substituted hydroxyethyl cellulose and cellulose solutions in NaOH-water[J]. Nordic Pulp & Paper Research Journal, 2015, 30(1). |
[15] | JIANG Z, LU A, ZHOU J, et al. Interaction between –OH groups of methylcellulose and solvent in NaOH/urea aqueous system at low temperature[J]. Cellulose, 2012, 19(3): 671-678. |
[16] | KUO Y, HONG J. Investigation of solubility of microcrystalline cellulose in aqueous NaOH[J]. Polymers for advanced technologies, 2005, 16(5): 425-428. |
[17] | CAI J, ZHANG L, LIU S, et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures[J]. Macromolecules, 2008, 41(23): 9345-9351 |
[1] | 钟智丽 朱敏 张宏杰 翁琦. 大麻纤维在氯化锂/N,N-二甲基乙酰胺溶解体系中的溶解特性[J]. 纺织学报, 2016, 37(11): 92-97. |
|