纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 146-152.doi: 10.13475/j.fzxb.20180403907

• 管理与信息化 • 上一篇    下一篇

基于多特征融合图像分析技术的羊毛与羊绒鉴别

邢文宇1, 邓娜1, 辛斌杰2(), 于晨2   

  1. 1.上海工程技术大学 电子电气工程学院, 上海 201620
    2.上海工程技术大学 服装学院, 上海 201620
  • 收稿日期:2018-04-17 修回日期:2018-11-29 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 辛斌杰
  • 作者简介:邢文宇(1995—),男,硕士生。主要研究方向为纤维图像鉴别。
  • 基金资助:
    上海市自然科学基金资助项目(18ZR1416600)

Identification of wool and cashmere based on multi-feature fusion image analysis technology

XING Wenyu1, DENG Na1, XIN Binjie2(), YU Chen2   

  1. 1. School of Electric and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Fashion College, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2018-04-17 Revised:2018-11-29 Online:2019-03-15 Published:2019-03-15
  • Contact: XIN Binjie

摘要:

为快速准确地鉴别羊毛与羊绒,提出一种基于多特征融合的鉴别方法。首先利用光学显微镜及数码相机对羊毛与羊绒纤维进行图像采集,然后分别采用2种类型的预处理操作得到单根纤维图像与去除背景的纤维二值图像;其次通过灰度共生矩阵算法提取第1类预处理后羊毛与羊绒纤维图像的纹理特征参数,基于中轴线算法提取第2类预处理后纤维图像的直径形态特征参数;最后将纹理及形态特征参数融合成多维数组并通过K均值算法进行聚类识别。实验结果显示,与传统利用单一纤维特征提取算法进行识别的方法相比,该算法平均识别率可达到95.25%,识别率较高,可用于羊毛与羊绒纤维的自动分类识别。

关键词: 羊毛, 羊绒, 多特征融合, 纤维鉴别, 灰度共生矩阵, 中轴线算法, K均值算法

Abstract:

For rapid identification of wool and cashmere, a method based on the multi-feature fusion for the fiber identification was proposed. Firstly, the images of wool and cashmere fibers were captured by an optical microscope and a digital camera. Secondly, two kinds of preprocessing operations were carried out respectively, and the binary images of single fiber image and background free fiber were obtained. Then, the texture parameters of the first kind of cashmere and wool fiber images were extracted by the gray level co-occurrence matrix algorithm and the diameter parameters of the second kinds of fiber images were extracted based on the central axis algorithm. Finally, the texture and morphological feature parameters were fused into multidimensional array and the clustering analysis was carried out by the K-means algorithm. The experimental results show that the average identification rate of the algorithm proposed can reach 95.25%. Compared with the conventional single fiber feature extraction algorithm, the recognition rate is high, which confirmed that this method can be used for automatic classification and identification of cashmere and wool fibers.

Key words: wool, cashmere, multi-feature fusion, fiber identification, gray level co-occurrence matrix, central axis method, K-means algorithm

中图分类号: 

  • TS102.3

图1

原始羊绒和羊毛显微镜图像(×400)"

图2

羊绒的图像预处理过程图"

图3

原始图像和增强后图像的灰度直方图"

图4

羊毛的图像预处理过程图"

图5

对比度拉伸增强后图像的灰度直方图"

图6

纹理特征变化曲线"

图7

纤维轮廓线提取过程"

图8

纤维轮廓图"

图9

纤维中轴线图"

图10

直径求取算法流程"

表1

单一灰度共生矩阵算法识别率"

羊绒与羊毛根数比 根数识别率/%
4∶6 92.3
5∶5 91.5
6∶4 92.0

表2

本文提出算法的识别率"

样本
名称
样本数量/
识别正确
数量/根
根数识别
率/%
羊绒 200 189 94.50
羊毛 200 192 96.00
合计 400 381 95.25
[1] 蒋高平, 钟跃崎, 王荣武, 等. 基于谱线特征的羊绒与羊毛的鉴别[J]. 纺织学报, 2010,31(4):15-19.
JIANG Gaoping, ZHONG Yueqi, WANG Rongwu, et al. Identification of wool and cashmere based on characteristics of spectral line[J]. Journal of Textile Research, 2010,31(4):15-19.
[2] 唐杰, 赵世海, 银海燕, 等. 羊毛、羊绒纤维鉴别方法综述[J]. 毛纺科技, 2014,42(7):48-50.
TANG Jie, ZHAO Shihai, YIN Haiyan, et al. Identification methods description of wool and cashmere[J]. Wool Textile Journal, 2014,42(7):48-50.
[3] 张荣娜, 秦士忠, 朱林平. 山羊绒与其他动物纤维CAT扫描电子显微镜系统研究[J]. 检验检疫科学, 2001,11(3):1-4,11.
ZHANG Rongna, QIN Shizhong, ZHU Linping. Study on CAT scanning electron microscope system of cashmere and other animal fibers[J]. Inspection and Quarantine Science, 2001,11(3):1-4,11.
[4] 陈国华, 王金泉. 羊绒与羊毛的碱溶度差异[J]. 毛纺科技, 2000,28(2):18-20.
CHEN Guohua, WANG Jinquan. Difference in alkali solubility of cashmere and wool[J]. Wool Textile Journal, 2000,28(2):18-20.
[5] TANG M, ZHANG W, ZHOU H, et al. A real-time PCR method for quantifying mixed cashmere and wool based on hair mitochondrial DNA[J]. Textile Research Journal, 2014,84(15):1612-1621.
doi: 10.1177/0040517513494252
[6] HARALICK R M. Statistical and structural approaches to texture[J]. Proceeding of IEEE, 1975,67(5):786-504.
doi: 10.1109/PROC.1979.11328
[7] 汪黎明, 陈健敏, 王锐, 等. 织物折皱纹理灰度共生矩阵分析[J]. 青岛大学学报(工程技术版), 2003,18(4):5-8.
WANG Liming, CHEN Jianmin, WANG Rui, et al. The analysis of grain of fabric winkle by concurrence matrix of gray degree[J]. Journal of Qingdao University (Engineering Technology Edition), 2003,18(4):5-8.
[8] 白雪冰, 王克奇, 王辉, 等. 基于灰度共生矩阵的木材纹理分类方法的研究[J]. 哈尔滨工业大学学报, 2005,37(12):1667-1670.
BAI Xuebing, WANG Keqi, WANG Hui, et al. Research on the classification of wood texture based on gray level co-occurrence matrix[J]. Journal of Harbin Institute of Technology, 2005,37(12):1667-1670.
[9] PORTILLO-GARCIA J, TRUEBA-SANTANDER I, MIGUEL-VELA G D, et al. Efficient multi-spectral texture segmentation using multivariate statistics[J]. IEE Proceeding: Vision Image, and Signal Processing, 1998,145(5):257-364.
[10] 刘玮, 李发源, 熊礼阳, 等. 基于区域生长的黄土地貌沟沿线提取方法与实验[J]. 地球信息科学学报, 2016,18(2):220-226.
LIU Wei, LI Fayuan, XIONG Liyang, et al. Shoulder line extraction in the loess plateau based on region growing algorithm[J]. Journal of Geo-Information Science, 2016,18(2):220-226.
[11] 王蒙, 吕建平. 基于边缘检测和自动种子区域生长的图像分割算法[J]. 西安邮电学院学报, 2011,16(6):16-19.
WANG Meng, LÜ Jianping. An image segmentation algorithm based on edge extraction with automatic seeded region growing[J]. Journal of Xi'an Institute of Posts and Telecommunications, 2011,16(6):16-19.
[12] 辛栋. 心脏造影图像中血管直径测量技术研究[D]. 郑州:郑州大学, 2012: 22-26.
XIN Dong. Study on measurement of blood vessel diameter in cardiac contrast images[D]. Zhengzhou: Zhengzhou University, 2012: 22-26.
[13] OSHER S, FEDKIW R. Level Set Methods and Dynamic Implicit Surfaces[M]. New York: Springer-Verlag, 2002: 15-30.
[14] 朱俊平, 路凯, 柴新玉, 等. 羊绒与羊毛直径的水平集中轴线法测量[J]. 纺织学报, 2017,38(9):14-18.
ZHU Junping, LU Kai, CHAI Xinyu, et al. Level set of central axis method of cashmere and wool diameter[J]. Journal of Textile Research, 2017,38(9):14-18.
[15] 孙可, 刘杰, 王学颖. K均值聚类算法初始质心选择的改进[J]. 沈阳师范大学学报(自然科学版), 2009,27(4):448-450.
SUN Ke, LIU Jie, WANG Xueying. K Mean cluster algorithm with refined initial center point[J]. Journal of Shenyang University (Natural Science Edition), 2009,27(4):448-450.
[16] 焦明艳. 一种基于灰度共生矩阵的羊绒与羊毛识别方法[J]. 成都纺织高等专科学校学报, 2017 (3):126-129.
JIAO Mingyan. A recognition method of cashmere and wool based on gray level co-occurrence matrix[J]. Journal of Chengdu Textile College, 2017(3):126-129.
[1] 崔桂新, 董永春, 王鹏. 羊毛/铁配合物非均相芬顿反应光催化剂的制备及其应用性能[J]. 纺织学报, 2019, 40(12): 68-73.
[2] 涂莉, 孟家光, 李欣, 李娟子. 废旧毛/丝/棉混纺面料的组分分析及其剥色工艺[J]. 纺织学报, 2019, 40(11): 75-80.
[3] 韦玲俐, 邹沁杉, 王璐, 罗菁, 夏鑫. 无氟自清洁功能型羊毛/羊绒混纺织物的研发[J]. 纺织学报, 2019, 40(09): 102-107.
[4] 张景清, 粟晖, 梁晓芸, 陈维骥, 姚志湘. 基于斜投影的纯羊毛毛线中酸性红26的快速检测[J]. 纺织学报, 2019, 40(08): 85-88.
[5] 徐成书, 吴梦婷, 任燕, 邢建伟, 蔡再生, 欧阳磊. 线性聚醚嵌段氨基硅油的制备及其性能[J]. 纺织学报, 2019, 40(08): 89-94.
[6] 包红, 徐水, 张小宁, 成国涛, 朱勇. 家蚕丝素蛋白阳离子化及其对羊毛性状的影响[J]. 纺织学报, 2019, 40(07): 24-30.
[7] 梅静霞, 张楠, 王强, 袁久刚, 范雪荣. 基于修饰蛋白酶的羊毛织物防毡缩整理[J]. 纺织学报, 2019, 40(06): 73-78.
[8] 安芳芳, 房宽峻, 刘秀明, 蔡玉青, 韩双, 杨海贞. 羊毛织物的蛋白酶改性对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(06): 58-63.
[9] 刘淑萍, 李亮, 刘让同, 崔世忠, 王艳婷. 羧甲基纤维素钠改性角蛋白膜的结构与性能[J]. 纺织学报, 2019, 40(06): 14-19.
[10] 陈静静, 王必其, 王雪琴. 针刺复合羊毛面料的设计及其性能[J]. 纺织学报, 2019, 40(03): 49-53.
[11] 李博, 姚金波, 牛家嵘, 王乐, 冯懋, 孙艳丽. 采用还原剂-甲酸法溶解制备羊毛角蛋白质溶液[J]. 纺织学报, 2019, 40(03): 1-7.
[12] 邢丽娟, 刘新金, 苏旭中, 曹秀明. 应用灰色聚类方法评价特种动物纤维综合物理性能[J]. 纺织学报, 2019, 40(01): 26-31.
[13] 俞俭 逄增媛 魏取福. 聚苯胺/壳聚糖/羊毛复合织物导电性能及苯胺吸附分子模拟[J]. 纺织学报, 2018, 39(12): 95-100.
[14] 张淑梅 姬春林 殷秀梅 潘峰 毛鑫磊. 羊毛生物酶联合防毡缩整理[J]. 纺织学报, 2018, 39(11): 85-90.
[15] 车秋凌 辛梅华 李明春 陈帅. 季铵化改性壳聚糖在羊毛织物酸性染料染色中的应用[J]. 纺织学报, 2018, 39(10): 86-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!