纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 150-156.doi: 10.13475/j.fzxb.20180404607

• 管理与信息化 • 上一篇    下一篇

单一视角下自适应阈值法的纱线毛羽识别及其应用

王文帝, 辛斌杰(), 邓娜, 李佳平, 刘宁娟   

  1. 上海工程技术大学 服装学院, 上海 201620
  • 收稿日期:2018-04-19 修回日期:2019-02-12 出版日期:2019-05-15 发布日期:2019-05-21
  • 通讯作者: 辛斌杰
  • 作者简介:王文帝(1993—),男,硕士生。主要研究方向为基于图像处理技术的纱线外观参数检测。
  • 基金资助:
    上海市自然科学基金项目(18ZR1416600)

Identification and application of yarn hairiness using adaptive threshold method under single vision

WANG Wendi, XIN Binjie(), DENG Na, LI Jiaping, LIU Ningjuan   

  1. Fashion College, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2018-04-19 Revised:2019-02-12 Online:2019-05-15 Published:2019-05-21
  • Contact: XIN Binjie

摘要:

为更准确测量纱线参数信息,针对图像背景处理和阈值分割算法对纱线图像处理后毛羽信息损失严重的问题,提出自适应灰度增强及线形区域阈值分割算法。并用自制图像采集系统获取6种不同类型的纱线样本,进行图像识别算法的准确性和有效性验证。结果表明:提出的2种算法可明显减少纱线图像信息损失,并且具有良好的鲁棒性,图像法检测的纱线毛羽长度和数量与目测法相近;实现了纱线主体与背景的灰度对比度增强,避免单一阈值导致的图像分割效果差的影响,提高纱线毛羽的识别精度和测量准确性,为后续研究纱线毛羽检测系统提供有效纱线图像分析算法。

关键词: 纱线毛羽, 自适应灰度增强, 区域阈值分割, 图像处理, 图像分析

Abstract:

In order to measure the yarn parameter information more accurately, the image grayscale enhancement algorithm and the linear region threshold segmentation algorithm were proposed to solve the serious loss of hairiness information after yarn image processing with the image background processing and the threshold segmentation algorithm. Using the self-built image acquisition system, six different types of yarn samples were acquired, and then the accuracy and validity of the image recognition algorithm was verified. Experimental results show that the proposed two algorithms can significantly reduce the loss of yarn image information and have good robustness. The length and number of yarn hairiness detected by the image processing method are similar to those of the visual inspection method. The grayscale contrast of the yarn and yarn image background is enhanced, and the effect of poor image segmentation due to a single threshold is avoided, thereby improving the recognition accuracy and measurement accuracy of the yarn hairiness. The research results provide an effective yarn image analysis algorithm for the subsequent development of a commercial yarn hairiness detection system.

Key words: yarn hairiness, adaptive grayscale enhancement, regional threshold segmentation, image processing, image analysis

中图分类号: 

  • TP319

图1

纱线毛羽图像采集系统"

表1

纱线样本的基本参数"

试样编号 纱线成分 成纱方式 梳纱工艺 纱线线密度/tex
1# 环锭纺 精梳 14
2# 环锭纺 精梳 18
3# 环锭纺 精梳 26
4# 环锭纺 普梳 26
5# 转杯纺 精梳 28
6# 涤纶 环锭纺 精梳 28

图2

纱线原始图像"

图3

图像差分处理"

图4

背景去除后图像灰度增强对比"

图5

图像处理后图像局部灰度值矩阵图"

图6

维纳滤波后图像对比"

图7

OTSU阈值分割后图像对比"

图8

OTSU阈值分割后图像对比"

图9

线性区域阈值分割与全阈值分割对比"

图10

纱线图像形态学处理"

表2

图像法与目测法检测纱线毛羽长度和数量的对比"

编号 毛羽长度/
mm
毛羽根数 偏差/%
图像法 目测法
1 107.4 86.7 23.88
2 23.3 22.3 4.5
1# 3 5.1 5.1 0
4 1.2 1.2 0
5 0.6 0.6 0
6 0 0 0
1 127.3 87.6 45.32
2 13.6 13.2 3.03
2# 3 1.3 1.3 0
4 0 0 0
5 0 0 0
6 0 0 0
1 75.5 67.3 12.18
2 10.1 8.7 16.09
3# 3 0.9 0.9 0
4 0.2 0.2 0
5 0.1 0.1 0
6 0 0 0
1 107.8 92.3 16.79
2 20.1 18.8 6.91
4# 3 2.8 2.8 0
4 0.3 0.3 0
5 0.1 0.1 0
6 0 0 0
1 117.3 86.7 35.29
2 23.1 19.6 17.86
5# 3 2.6 2.6 0
4 0.2 0.2 0
5 0 0 0
6 0 0 0
1 76.3 63.8 19.59
2 12.8 11.3 13.27
6# 3 5.2 5.1 1.96
4 0.3 0.3 0
5 0 0 0
6 0 0 0
[1] WANG Y Y, HUANG Q L, YANG G Y. The application of intelligent laser sensor on yarn quality inspection[J]. Soft Magnetic Materials, 2011,298:35-39.
[2] SUN Y Y, PAN R R, ZHOU J, et al. Analysis of detectable angles of yarn hairiness in optical measurements[J]. Textile Research Journal, 2017,87(11):1297-1307.
[3] OH S, LEE M S, KIM S. Automatic measurement of yarn crimp using image analysis[J]. Journal of Testing and Evaluation, 2014,42(2):291-297.
[4] HUANG Z, YANG YANG, An image analysis method for studing yarn cross-sectional structure[J]. Advanced Measurement and Test, 2011, 301-303: 41-48.
[5] SULE I. The determination of the twist level of the Chenille yarn using novel image processing methods: Extraction of axial grey-level characteristic and multi-step gradient based thresholding[J]. Digital Signal Processing, 2014,29:78-99.
[6] 孙银银, 潘如如, 高卫东. 基于数字图像处理的纱线毛羽检测[J]. 纺织学报, 2013,34(6):102-106.
SUN Yinyin, PAN Ruru, GAO Weidong. Detection of yarn hairiness based on digital image processing[J]. Journal of Textile Research, 2013,34(6):102-106.
[7] NATERI A S, EBRAHIMI F, SADEGHZADE N. Evaluation of yarn defects by image processing tech-nique[J]. Optik, 2014,125(20):5998-6002.
[8] FABIJAŃSKA A, JACKOWSKA-STRUMIŁŁO L. Image processing and analysis algorithms for yarn hairiness determination[J]. Machine Vision and Applications, 2012,23(3):527-540.
[9] KOLAREVIC D, VUJASINOVIC T, KANJER K, et al. Effects of different preprocessing algorithms on the prognostic value of breast tumour microscopic images[J]. Journal of Microscopy, 2018,270(1):17-26.
doi: 10.1111/jmi.12645 pmid: 28940426
[10] YANG L, ZHANG Y Z, GULDNER I H, et al. Fast background removal in 3D fluorescence microscopy images using one-class learning[J]. Medical Image Computing and Computer-Assisted Intervention, 2015,9351(3):292-299.
[11] CELIK H I. Development of a machine vision system for yarn bobbin inspection[J]. Industria Textile, 2016,67(5):292-296.
[12] ASGARI H, MOKHTARI F, LATIFI M, et al. Characterizing cotton yarn appearance due to yarn-to-yarn abrasion by image processing[J]. Journal of The Textile Institute, 2014,105(5):477-482.
[13] HLADNIK A, PAVKO-CUDEN A, FARAJIKHAH S. Image segmentation based determination of elastane core yarn diameter[J]. Fibres & Textiles in Eastern Europe, 2016,24(2):29-36.
[14] JING J F, HUANG M Y, LI P F, et al. Automatic measurement of yarn hairiness based on the improved MRMRF segmentation algorithm[J]. Journal of The Textile Institute, 2018,109(6):740-749.
[1] 张铮烨, 辛斌杰, 邓娜, 陈阳, 邢文宇. 基于边界跟踪测量麻纤维横截面参数的算法研究与应用[J]. 纺织学报, 2020, 41(02): 39-43.
[2] 李鹏飞, 严凯, 张缓缓, 景军锋. 基于最大熵与密度聚类相融合的毛羽检测[J]. 纺织学报, 2019, 40(07): 158-162.
[3] 吴义伦, 李忠健, 潘如如, 高卫东, 张宁. 应用色纺纱图像的纬编针织物外观模拟[J]. 纺织学报, 2019, 40(06): 111-116.
[4] 黄嘉俊, 柯薇, 王静, 邓中民. 基于计算机视觉的牛仔服装色差检测评级系统[J]. 纺织学报, 2019, 40(05): 163-169.
[5] 蔡逸超, 周晓, 宋明峰, 牟新刚. 应用多尺度多方向模板卷积的筒子纱缺陷检测[J]. 纺织学报, 2019, 40(04): 152-157.
[6] 巫莹柱 单颖法 黄伯熹 林广茂 梁家豪 张晓利. 聚对苯二甲酸丙二醇酯与聚对苯二甲酸丁二醇酯混纺纤维的智能识别[J]. 纺织学报, 2018, 39(09): 169-175.
[7] 陆奕辰 王蕾 唐千惠 潘如如 高卫东. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(08): 144-149.
[8] 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141.
[9] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
[10] 王雯雯 刘基宏. 应用优化霍夫变换的细纱断头检测[J]. 纺织学报, 2018, 39(04): 36-41.
[11] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[12] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[13] 王晓予 向军 潘如如 梁惠娥 高卫东. 服饰刺绣图案的自动提取与色块分割[J]. 纺织学报, 2017, 38(09): 120-126.
[14] 孙银银 张宁 吴洋 潘如如 高卫东. 纱线毛羽骨架及长度的跟踪测量[J]. 纺织学报, 2017, 38(08): 32-38.
[15] 路凯 钟跃崎 朱俊平 柴新玉. 基于视觉词袋模型的羊绒与羊毛快速鉴别方法[J]. 纺织学报, 2017, 38(07): 130-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!