纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 20-26.doi: 10.13475/j.fzxb.20180406407

• 纺织工程 • 上一篇    下一篇

单轴多级循环加载下聚氯乙烯膜材料的力学行为与能量耗散

汪泽幸(), 朱文佳, 何斌, 刘超   

  1. 湖南工程学院 纺织服装学院, 湖南 湘潭 411104
  • 收稿日期:2018-04-27 修回日期:2019-03-06 出版日期:2019-06-15 发布日期:2019-06-25
  • 作者简介:汪泽幸(1982—),男,副教授,博士。主要研究方向为产业用纺织品。E-mail:zexing. wang@gmail.com
  • 基金资助:
    湖南省自然科学基金项目(2016JJ6030);湖南省科技厅科学研究项目(2013FJ3091);湖南省教育厅优秀青年项目(16B059)

Mechanical behavior and energy dissipation of polyvinyl chloride membrane under uniaxial multi-level cyclic loading

WANG Zexing(), ZHU Wenjia, HE Bin, LIU Chao   

  1. College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2018-04-27 Revised:2019-03-06 Online:2019-06-15 Published:2019-06-25

摘要:

为研究建筑用膜材料在多级循环加载下的力学行为与能量耗散,对聚氯乙烯(PVC)膜材料进行单轴多级循环加载实验测试,分析了变形行为、能量耗散与损伤特性。研究结果表明:相对于单轴拉伸强度,经向试样的循环加卸载峰值强度较低,而纬向试样的循环加卸载强度较高;多级循环加载条件下,加载与卸载弹性模量呈现逐渐增加的变化趋势,且卸载弹性模量高于加载弹性模量;小载荷水平下,相对于经向试样,纬向试样表现出较高的总吸收应变能、弹性应变能和耗散能,但在高载荷水平下较低;在逐级循环加载过程中,PVC膜材料均表现为黏-弹-塑性,基于塑性变形累积来定义损伤变量较为合理。

关键词: 聚氯乙烯膜材料, 多级循环加载, 能量耗散, 损伤变量

Abstract:

In order to investigate the mechanical behavior and energy dissipation of architectural membrane under multi-level loading, the uniaxial multi-level cyclic loading tests were conducted based on the polyvinyl chloride (PVC) membrane, and its deformation behavior, energy dissipation and damage properties were also analyzed. The experimental results show that the peak-strength of warp samples is lower than that of uniaxial tensile strength, and the fill samples is higher that of uniaxial tensile strength under multi-level cyclic loading. Under multi-level cyclic loading, the loading and unloading elastic modulus increase, and the later is higher than former. Compared with warp samples, the fill samples show higher total absorption strain energy, elastic strain energy and dissipated energy at lower loading level, while the indexes are lower at higher loading level. As the PVC membrane is always in viscoelastic plastic stage, it is more reasonable that damage variation is defined based on accumulative plastic deformation, compared with elastic modulus variation and accumulative dissipated energy.

Key words: polyvinyl chloride membrane, multi-level cyclic loading, energy dissipation, damage variable

中图分类号: 

  • TS101

图1

试样拉伸断裂应力-应变曲线"

图2

多级循环加载与卸载下试样的应力-应变曲线 注:m—加载; n—卸载。"

图3

试样W-1第2级的应力-应变曲线"

图4

加载与卸载弹性模量曲线"

图5

能量变化与应力和归一化应力关系曲线"

图6

经典试样的第一及二级应力-应变曲线"

图7

能量耗散率变化曲线"

图8

损伤变量DU与循环次数曲线"

图9

损伤变量Dε与循环次数曲线"

[1] CHILTON J, VENLASCO R. Applications of textile composites in the construction industry [C]//LONG A C. Design and Manufacture of Textile Composites. Cambridge: Woodhead Publishing Limited, 2005: 426-427.
[2] 陈守辉. 机织建筑膜材料料料拉伸性能研究:从单轴、双轴到多轴[D]. 上海: 东华大学, 2008: 2-26.
CHEN Shouhui. Tensile performance of woven membrane materials under uni-axial, bi-axial and multi- axial loads[D]. Shanghai: Donghua University, 2008: 2-26.
[3] AMBROZIAK A. Mechanical properties of pre- contraint 1202s coated fabric under biaxial tensile with different load ratios[J]. Construction and Building Materials, 2015,80(1):201-224.
[4] 陈务军, 唐雅芳, 赵大鹏, 等. 建筑膜材料料力学性能与焊接缝合性能试验研究[J]. 空间结构, 2007,13(1):37-44.
CHEN Wujun, TAN Yafang, ZHAO Dapeng, et al. Experiments on the mechanical properties and the welded seam properties of architectural membranes[J]. Spatial Structures, 2007,13(1):37-44.
[5] 赵大鹏, 陈务军, 任小强. 高强PVDF/PES膜材料料缝合与膜材料料力学性能试验研究[J]. 空间结构, 2009,15(1):77-83.
ZHAO Dapeng, CHEN Wujun, REN Xiaoqian. Exp- eriments on mechanical properties of high-strength PVDF/ PES fabric and welded seams[J]. Spatial Structures, 2009,15(1):77-83.
[6] 张丽, 陈务军, 董石麟. PVDF/PES建筑织物膜材料料力学性能单双轴拉伸试验[J]. 空间结构, 2012,18(3):41-48.
ZHANG Li, CHEN Wujun, DONG Shilin. Mechanical properties analysis of architectural PVDF/ PES fabrics with uni-tensile and bi-axial test[J]. Spatial Structures, 2012,18(3):41-48.
[7] 汪泽幸, 蒋金华, 陈南梁. 反复加载下机织物增强柔性复合材料的力学行为[J]. 纺织学报, 2014,35(1):51-56.
WANG Zexing, JIANG Jinhua, CHEN Nanliang. Mechanical behavior of Woven fabric reinforced flexible composites under repeated loading[J]. Journal of Textile Research, 2014,35(1):51-56.
[8] CHEN J W, CHEN W J, ZHANG D X. Experimental study on uniaxial and biaxial tensile properties of coated fabric for airship envelopes[J]. Journal of Reinforced Plastics and Composites, 2013,33(7):630-647.
[9] WANG F X, CHEN Y L, XU W, et al. Experimental study on uniaxial tensile and welding performance of a new coated fabric for airship envelopes[J]. Journal of Industrial Textiles, 2017,46(7):1474-1497.
[10] ZHANG Y Y, ZHANG Q L, LEI K, et al. Experimental analysis of tensile behaviors of polytetrafluoroethylene- coated fabrics subjected to monotonous and cyclic loading[J]. Textile Research Journal, 2013,84(3):231-245.
[11] ZHANG Y Y, ZHANG M Y. Aging properties of polyvinyllidenefluoride-coated polyesters used in tensioned membrane structure: effect of loading protocol and environment[J]. Advances in Materials Science and Engineering, 2017,24:1-10.
[12] AMBROZIAK A, KŁOSOWSKI P. Mechanical properties of polyvinyl chloride-coated fabric under cyclic tests[J]. Journal of Reinforced Plastics and Composites, 2013,33(3):225-234.
[13] LEMAITRE J, DESMORAT R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Fai-lures[M]. Berlin: Springer-Verlag, 2005: 17.
[1] 汪泽幸, 吴波, 李帅, 何斌. 循环应力松弛下黄麻织物/ 聚乙烯复合材料能量耗散演化规律[J]. 纺织学报, 2020, 41(10): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!