纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 24-29.doi: 10.13475/j.fzxb.20180501506

• 纤维材料 • 上一篇    下一篇

多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响

刘金鑫1, 张海峰1, 张星1, 黄晨1, 郑晓冰2, 靳向煜1()   

  1. 1.东华大学 产业用纺织品教育部工程研究中心, 上海 201620
    2.浙江新维狮合纤股份有限公司, 浙江 嘉兴 314005
  • 收稿日期:2018-05-04 修回日期:2019-01-03 出版日期:2019-05-15 发布日期:2019-05-21
  • 通讯作者: 靳向煜
  • 作者简介:刘金鑫(1990—),男,博士生。主要研究方向为双组分纤维过滤材料。
  • 基金资助:
    国家科技支撑计划(2015BAE01B01);中国纺织工业联合会应用基础研究项目(J201703)

Influence of multistage drawing and heat setting on structure and properties of polyethylene/polypropylene bicomponent fibers

LIU Jinxin1, ZHANG Haifeng1, ZHANG Xing1, HUANG Chen1, ZHENG Xiaobing2, JIN Xiangyu1()   

  1. 1. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University,Shanghai 201620, China
    2. Zhejiang Sunwish Chemical Fiber Co., Ltd., Jiaxing, Zhejiang 314005, China
  • Received:2018-05-04 Revised:2019-01-03 Online:2019-05-15 Published:2019-05-21
  • Contact: JIN Xiangyu

摘要:

为研究聚乙烯/聚丙烯(PE/PP)双组分纤维在非织造熔融纺丝成网工艺中的尺寸及力学稳定性,在双组分纤维制备过程中关键工艺位置进行取样,借助X射线多晶衍射仪、电子单纤维强力仪、扫描电子显微镜、BEION纤维细度测试系统等对纤维的结构和性能进行测试与表征。结果表明:多级拉伸过程中纤维的取向度和结晶度逐渐增加,其中二级拉伸对纤维体系的取向结晶起主要作用;纤维未经热定型时尺寸稳定性差,干热收缩率高;经多级拉伸和热定型后纤维力学性能明显提高,其断裂强度最大可达3.38 cN/dtex;升高热定型温度有利于提高纤维的尺寸稳定性,制备过程中热定型温度不应低于110 ℃。

关键词: 熔融纺丝成网, 聚乙烯/聚丙烯双组分纤维, 多级拉伸, 热定型, 力学性能

Abstract:

In order to study the dimension and mechanical stability of polyethylene/polypropylene (PE/PP) bicomponent fibers prepared by the nonwoven spunlaid process, PE/PP bicomponent fiber samples were taken at different key process positions. The structure and properties of the fibers were measured by X-ray diffractometer, electronic single fiber strength tester, scanning electron microscope, and BEION fiber fineness test system. The results show that the degree of orientation and crystallinity of fiber gradually increase in the multistage drawing process, and the second stage drawing in the post-spinning process plays a major role in the orientation and crystallinity of fiber. The dimensional stability of fiber is not determined without heat setting, and the dry heat shrinkage is high. The mechanical properties of fiber after multistage drawing and heat setting are significantly improved, and the maximum breaking strength can reach 3.38 cN/dtex. The increase of heat setting temperature improves the dimensional stability of the fiber, and the heat setting temperature during preparation should not lower than 110 ℃.

Key words: spunlaid, polyethylene/polypropylene bicomponent fiber, multistage drawing, heat setting, mechanical property

中图分类号: 

  • TS174.8

图1

PE/PP双组分纤维纺丝成网工艺流程图 1—PE组分螺杆挤出机;2—PP组分螺杆挤出机;3—过滤器;4—计量泵;5—纺丝组件;6—一级拉伸装置;7—二级拉伸装置;8—三级拉伸装置;9—热定型装置;10—分丝器;11—抽吸风装置;12—成网帘。"

图2

不同拉伸级数下PE/PP双组分纤维样品的SEM照片"

图3

不同拉伸级数下PE/PP双组分纤维的2D-WAXD光谱"

图4

不同拉伸级数下PE/PP双组分纤维的XRD光谱"

表1

拉伸级数对PE/PP双组分纤维取向度和结晶度的影响"

试样编号 取向度 结晶度
R-1
S-1
S-2
S-3
36.60
48.60
67.90
74.80
37.67
45.31
59.65
65.64

表2

拉伸级数对PE/PP双组分纤维力学性能的影响"

试样编号 线密度/dtex 强度/(cN·dtex-1) 伸长率/%
R-1 10.01 1.40 985.57
S-1 8.06 1.69 949.36
S-2 2.61 2.90 175.84
S-3 2.18 3.07 167.24

图5

PE/PP双组分纤维拉伸后的SEM照片"

图6

不同拉伸级数纤维的收缩率随时间的变化"

表3

不同热定型温度下PE/PP双组分纤维的力学性能"

试样
编号
线密度/
dtex
断裂强度/
(cN·dtex-1)
伸长率/
%
干热
收缩率/%
H-1 2.18 3.09 163.49 2.58
H-2 2.18 3.11 161.57 2.25
H-3 2.18 3.30 152.70 1.47
H-4 2.18 3.38 145.68 1.24
[1] 刘亚, 王铃铃. 卫生用热风非织造布的质量探讨[J]. 产业用纺织品, 2005,23(7):13-18.
LIU Ya, WANG Lingling. The study on hot air-though hygienic nonwovens quality[J]. Technical Textiles, 2005,23(7):13-18.
[2] DONG Ting, XU Guangbiao, WANG Fumei. Oil spill cleanup by structured natural sorbents made from cattail fibers[J]. Industrial Crops and Products, 2015,76:25-33.
[3] 周晨, 徐熊耀, 靳向煜. ES纤维热风非织造布驻极性能初探[J]. 纺织学报, 2012,33(9):66-70.
ZHOU Chen, XU Xiongyao, JIN Xiangyu. Exploration of electret property of area bonded ES-fiber fabric[J]. Journal of Textile Research, 2012,33(9):66-70.
[4] 曹识超. 电池隔膜用ES复合纤维非织造材料的磺化改性研究[D]. 上海:东华大学, 2011: 4.
CAO Shichao. Study on the sulfonation treatment of ES nonwoven fabrics as battery separator[D]. Shanghai: Donghua University, 2011: 4.
[5] 肖长发, 尹翠玉. 化学纤维概论[M]. 北京: 中国纺织出版社, 2015: 54.
XIAO Changfa, YIN Cuiyu. Introduction to Chemical Fibers[M]. Beijing: China Textile & Apparel Press, 2015: 54.
[6] 柯勤飞, 靳向煜. 非织造学[M]. 上海: 东华大学出版社, 2010: 235.
KE Qinfei, JIN Xiangyu. Nonwovens[M]. Shanghai: Donghua University Press, 2010: 235.
[7] 陈蕾, 杨明远, 毛萍君. 熔纺聚丙烯腈纤维的拉伸及热定型工艺[J]. 合成纤维工业, 2001(2):4-7.
CHEN Lei, YANG Mingyuan, MAO Pingjun. Study on drawing and heat setting of melt processable PAN(MPPAN) fibers[J].China Synthetic Fiber Industry, 2001(2):4-7.
[8] 李健, 黄庆, 李鑫. PGLA纤维拉伸过程中结晶与取向的变化[J]. 纺织学报, 2011,32(1):1-5.
LI Jian, HUANG Qing, LI Xin. Crystallinity and orientation of PGLA fiber during drawing[J]. Journal of Textile Research, 2011,32(1):1-5.
[9] 王非, 刘丽超, 薛平, 等. 拉伸温度对UHMW-PE/HDPE共混纤维结晶性能的影响[J]. 塑料, 2018,47(3):76-79.
WANG Fei, LIU Lichao, XUE Ping, et al. Effect of hot-drawing temperature on crystalline characters of UHMW-PE /HDPE Blend Fibers[J]. Plastic, 2018,47(3):76-79.
[10] 关礼争, 金旺, 王亚涛. 热拉伸工艺对聚甲醛纤维结构与性能的影响[J]. 合成纤维工业, 2018,41(3):25-28,32.
GUAN Lizheng, JIN Wang, WANG Yatao. Effect of hot drawing process on structure and properties of polyoxymethylene fiber[J]. China Synthetic Fiber Industry, 2018,41(3):25-28,32.
[11] 张勇, 张蕊萍, 相鹏伟, 等. 多级热拉伸对PPS纤维结构与性能的影响[J].合成纤维工业, 2015(6):38-42.
ZANG Yong, ZHANG Ruiping, XIANG Pengwei, et al. Effect of multi-zone hot drawing on structure and properties of PPS fiber[J].China Synthetic Fiber Industry, 2015(6):38-42.
[12] 刘鹏清, 吴炜誉, 李守群, 等. 拉伸与热定型对聚苯硫醚长丝结构性能的影响[J].合成纤维工业, 2008(2):8-11, 15.
LIU Pengqing, WU Weiyu, LI Shouqun, et al. Effect of drawing and heat setting on structure and properties of polyphenylene sulfide filament[J].China Synthetic Fiber Industry, 2008(2):8-11, 15.
[13] 赵博. 纺黏法非织造布气流拉伸模型的研究[J].聚酯工业, 2008(6):12-16.
ZHAO Bo. Research on the air dragmodel of spun-bonded nonwoven[J].Polyester Industry, 2008(6):12-16.
[14] 游锦璋, 靳向煜. 纺粘宽狭缝正压牵伸器拉伸气流流场研究[J]. 产业用纺织品, 2009,27(1):10-14.
YOU Jinzhang, JIN Xiangyu. Study on air flow field with wide slotmechanism of positive drawing in spunbond process[J]. Technical Textiles, 2009,27(1):10-14.
[15] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 71.
YU Weidong. Textile[M]. Beijing: China Textile & Apparel Press, 2006: 71.
[16] 赵敏. 改性聚丙烯新材料[M]. 北京: 化学工业出版社, 2010: 150.
ZHAO Min. Modified Polypropylene New Material[M]. Beijing: Chemical Industry Press, 2010: 150.
[17] KANG Y A, KIM K H, IKEHATA S, et al. In-situ analysis of fiber structure development for isotactic polypropylene[J]. Polymer, 2011,52(9):2044-2050.
[1] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[4] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[5] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[6] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[7] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[8] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[9] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[10] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[11] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[12] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[13] 刘淑萍, 李亮, 刘让同, 崔世忠, 王艳婷. 羧甲基纤维素钠改性角蛋白膜的结构与性能[J]. 纺织学报, 2019, 40(06): 14-19.
[14] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[15] 刘冰倩, 盛丹, 潘恒, 曹根阳. N,N-二甲基乙酰胺/氯化钙体系对热致液晶聚芳酯纤维结构及性能的影响[J]. 纺织学报, 2019, 40(04): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!