纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 18-23.doi: 10.13475/j.fzxb.20180503207

• 纤维材料 • 上一篇    下一篇

聚乙二醇/聚丙烯熔喷非织造材料的叶脉仿生结构及其保液性能

张恒1,2, 申屠宝卿1(), 章伟2, 张一风2, 崔国士3   

  1. 1.浙江大学 化学工程与生物工程学院, 浙江 杭州 310027
    2.中原工学院 纺织学院, 河南 郑州 451191
    3.河南科高辐射化工科技有限公司, 河南 洛阳 471000
  • 收稿日期:2018-05-14 修回日期:2018-12-11 出版日期:2019-05-15 发布日期:2019-05-21
  • 通讯作者: 申屠宝卿
  • 作者简介:张恒(1986—),男,讲师,博士。主要研究方向为非织造复合材料的功能性结构设计及应用。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309100);河南省科技攻关计划资助项目(182102210518);纺织服装产业河南省协同创新中心资助项目(2017CYY006);中原工学院青年人才创新能力基金项目(K2018QN011);中原工学院青年骨干教师培养计划项目(2018XQG04)

Structure and liquid retention properties of polyethylene glycol/ polypropylene melt blown nonwoven with bionic vein networks

ZHANG Heng1,2, SHENTU Baoqing1(), ZHANG Wei2, ZHANG Yifeng2, CUI Guoshi3   

  1. 1. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
    2. School of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. Henan Kegao Radiation Chemical Technology Co., Ltd., Luoyang, Henan 471000, China
  • Received:2018-05-14 Revised:2018-12-11 Online:2019-05-15 Published:2019-05-21
  • Contact: SHENTU Baoqing

摘要:

为探究超细纤维非织造材料的叶脉仿生网络结构对其保液性能的影响,以聚乙二醇(PEG)共混改性聚丙烯(PP)为原料,制备了PEG/PP熔喷非织造材料,并对其纤维直径分布、不同直径的纤维数量和特征长度3个仿生结构特征参数,以及水蒸发速率和持液率进行测试与表征。结果表明:小于800 nm、800~2 000 nm和大于2 000 nm 3种尺寸纤维在水平方向上交错排列,形成非对称结构的三级水平分支网络;增大PEG质量分数和提高纺丝模头温度可增强小于800 nm纤维组成的三级分支网;样品特征长度与模头温度表现为线性正相关,水蒸发速率符合纺织材料的散湿变化规律;PEG质量分数从0%增大到15%时,PEG/PP的持液率从1 938.3%降低到1 313.1%。

关键词: 聚乙二醇, 聚丙烯, 非织造材料, 仿生结构, 叶脉分支网络, 保液性

Abstract:

In order to study the bionic vein networks structure and liquid retention properties of polyethylene glycol (PEG)/polypropylene (PP) melt blown nonwovens, the microfiber nonwovens were prepared from PEG and PP blends by melt blowing. The structure including fiber diameter distribution, the quantity density of different diameter fibers, and properties of evaporation rate and retention capacity were investigated. The results show that three kinds of fibers with diameter of smaller than 800 nm, 800-2 000 nm and larger than 2 000 nm are staggered in horizontal direction, forming three level branching networks with asymmetric characteristics. Third branched networks composed of fibers smaller than 800 nm can be adjusted by increasing the PEG ratio and die temperature. The special length is linearly and positively correlated with the die temperature. The evaporation rate of the samples with bionic vein networks accord with the law of textile materials, showing that with the increasing of PEG ratio from 0% to 15%, the liquid retention capacity decreases from 1 938.3% to 1 313.1%.

Key words: polyethylene glycol, polypropylene, nonwoven, bionic, vein branched network, liquid dispersion

中图分类号: 

  • TS167

图1

PEG/PP样品的电镜图和纤维分支分布示意图R0—一级分支结构;Ri—二级分支结构;Rj—三级分支结构。"

图2

不同PEG质量分数样品的扫描电镜照片"

图3

纤维的分支数量随PEG质量分数和模头温度的变化曲线"

图4

分支密度随PEG质量分数和模头温度的变化曲线"

图5

蒸发速率随时间的变化曲线"

图6

持液率随PEG质量分数和模头温度的变化曲线"

[1] YU Bin, CAO Yongmin, SUN Hui, et al. The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens[J]. Journal of Polymers & the Environment, 2017,25(2):510-517.
[2] HAN W l, GAJANAN S B, WANG X H. Investigation of nanofiber breakup in the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2016,55(11):3150-3156.
[3] ZHANG Haifeng, LIU Jinxin, ZHANG Xing, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. Rsc Advances, 2018,8(15):7932-7941.
[4] ZHANG Chune, WEI Tian, LI Dandan, et al. The high performances of SiO2 coated melt-blown non-woven fabric for lithium-ion battery separator[J]. The Journal of Textile Institute, 2018,109(9):1254-1261.
[5] 魏发云, 张伟, 邹学书, 等. 等离子体诱导丙烯酸接枝改性聚丙烯熔喷非织造材料[J]. 纺织学报, 2017,38(9):109-114.
WEI Fayun, ZHANG Wei, ZOU Xueshu, et al. Grafted modification of polypropylene melt-blown nonwowen materials with acrylic acid induced by plasma[J]. Journal of Textile Research, 2017,38(9):109-114.
[6] KOU Jianlong, CHEN Yanyan, ZHOU Xiaoyan, et al. Optimal structure of tree-like branching networks for fluid flow[J]. Physica A: Statistical Mechanics and its Applications, 2014,393(1):527-534.
[7] SHOU Dahua, FAN Jintu. Design of nano-and microfibrous channels for fast capillary flow[J]. Langmuir, 2018,34(4):1235-1241.
pmid: 29249150
[8] 田伟, 韩旭, 邢肖平, 等. 提花水刺非织造布的吸湿扩散性能[J]. 纺织学报, 2014,35(9):47-50.
TIAN Wei, HAN Xu, XING Xiaoping, et al. Moisture absorbing and diffusing capacity of jacquard spun laced nonwovens[J]. Journal of Textile Research, 2014,35(9):47-50.
[9] SHOU Dahua, LI Ye, FAN Jintu, et al. Geometry-induced asymmetric capillary flow[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2014,30(19):5448-5454.
pmid: 24762329
[10] FAN Jintu, SARKAR M K, SZETO Y C, et al. Plant structured textile fabrics[J]. Materials Letters, 2007,61(2):561-565.
[11] CHEN Qing, FAN Jintu, MANAS Sarkar. Biomimetics of plant structure in knitted fabrics to improve the liquid water transport properties[J]. Textile Research Journal, 2010,80(6):568-576
[12] SARKAR M, FAN Jintu, SZETO Y C, et al. Biomimetics of plant structure in textile fabrics for the improvement of water transport properties[J]. Textile Research Journal, 2009,79(7):657-668.
[13] 张恒, 甄琪, 钱晓明, 等. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018,39(1):56-61.
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Prediction of pore sizes of polyester/polyamide 6 hollow segmented-pie microfiber nonwovens[J]. Journal of Textile Research, 2018,39(1):56-61.
[14] 张恒, 甄琪, 钱晓明, 等. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018,39(4):63-68.
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Preparation and moisture permeability of ultra-high molecular weight polyethylene flexible stab-resistant composite with dendritic structure[J]. Journal of Textile Research, 2018,39(4):63-68.
[15] 张志亮, 刘国东, 张富仓, 等. 植物叶片导水率的研究进展[J]. 生态学杂志, 2014,33(6):1663-1670.
ZHANG Zhiliang, LIU Guodong, ZHANG Fucang, et al. Research progress of plant leaf hydraulic conductivity[J]. Chinese Journal of Ecology, 2014,33(6):1663-1670.
[16] 龚容, 高琼. 叶片结构的水力学特性对植物生理功能影响的研究进展[J]. 植物生态学报, 2015,39(3):300-308.
GONG Rong, GAO Qiong. Research progress in the effects of leaf hydraulic characteristics on plant physiological functions[J]. Chinese Journal of Plant Ecology, 2015,39(3):300-308.
[17] 迟长龙, 于翔, 李静静, 等. PP/PEG共混体系熔体流变性能研究[J]. 塑料科技, 2013,41(5):43-47.
CHI Changlong, YU Xiang, LI Jingjing. Research on melt rheological properties of PP/PEG blends[J]. Plastics Science & Technology, 2013,41(5):43-47.
[18] 姜涛. PEG、EVA、WSPET改性丙纶流变行为的研究[J]. 石油化工高等学校学报, 2003,16(1):39-42.
JIANG Tao. The rheological behavior of PEG, EVA, WSPET modified polypropylene fiber[J]. Journal of Petrochemical Universities, 2003,16(1):39-42.
[19] SHOU Dahua, LI Ye, FAN Jintu. Treelike networks accelerating capillary flow[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014,89(5):053007.
[20] PAN Ning, CHEN Julie, SEO Moon, et al. Micromechanics of a planar hybrid fibrous network[J]. Textile Research Journal, 1997,67(12):907-925.
[21] LI Y, HOLCOMBE B V. A two-stage sorption model of the coupled diffusion of moisture and heat in wool fabrics[J]. Textile Research Journal, 1992,62(4):211-217.
[22] 张锐. 水刺非织造材料工艺参数与其保湿性之间的关系研究[D]. 杭州:浙江理工大学, 2010: 59-66.
ZHANG Rui. Study on the relationship between the process parameters of spunlaced non-woven and its moisture permeability [D]. Hangzhou: Zhejiang Sci-tech University, 2010: 59-66.
[1] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28.
[2] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[3] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[4] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[5] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[6] 朱清, 徐丹丹, 潘园歌, 王成龙, 郑今欢. 水性聚丙烯酸酯对涂层商标织物图案打印效果的影响[J]. 纺织学报, 2020, 41(08): 55-62.
[7] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[8] 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196.
[9] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[10] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[11] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[12] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[13] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[14] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[15] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!