纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 109-116.doi: 10.13475/j.fzxb.20180504908

• 染整与化学品 • 上一篇    下一篇

氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响

邹梨花1(), 徐珍珍1, 孙妍妍1, 王太冉1, 邱夷平2   

  1. 1.安徽工程大学 安徽省纺织结构复合材料国际科技合作研究中心, 安徽 芜湖 241000
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2018-05-21 修回日期:2019-05-03 出版日期:2019-08-15 发布日期:2019-08-16
  • 作者简介:邹梨花(1987—),女,讲师,博士。主要研究方向为纺织品的功能整理。E-mail: gazoulihua@163.com
  • 基金资助:
    2017安徽省对外科技合作项目(1704e1002213);安徽省高等学校纺织面料重点实验室、安徽省纺织工程技术研究中心开放基金项目(2018AKLTF08);2017年省高等教育提升计划自然科学研究一般项目(TSKJ2017B01);安徽工程大学引进人才科研启动基金项目(2016YQQ005)

Influence of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics

ZOU Lihua1(), XU Zhenzhen1, SUN Yanyan1, WANG Tairan1, QIU Yiping2   

  1. 1. International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University,Wuhu, Anhui 241000, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-05-21 Revised:2019-05-03 Online:2019-08-15 Published:2019-08-16

摘要:

为制备轻质高效的吸波型电磁屏蔽织物,采用层层组装方法在棉织物表面涂层氧化石墨烯/聚苯胺(GO/PANI)电磁屏蔽功能膜。研究苯胺单体浓度、氧化石墨烯质量浓度、组装层数对整理棉织物电性能及电磁屏蔽性能的影响,并分析了屏蔽电磁能的吸收率、反射率以及吸收屏蔽效能和反射屏蔽效能。结果表明:苯胺单体浓度和组装层数的增加有利于提高棉织物的电磁屏蔽效能,而随着氧化石墨烯质量浓度的增加,织物的电磁屏蔽效能先增加后减小;组装4层GO/PANI功能膜后棉织物的屏蔽效能达到19.91 dB,可屏蔽98.98%的电磁能,其吸收率达到57.63%,而反射率为41.35%,主要屏蔽机制是吸收。

关键词: 聚苯胺, 氧化石墨烯, 层层组装, 棉织物, 电磁屏蔽性能, 功能膜

Abstract:

In order to prepare lightweight and efficient electromagnetic shielding fabric of absorption-type, a graphene oxide (GO)/polyaniline (PANI) functional film was coated on cotton fabric using layer-by-layer assembling method. The influences of the concentration of aniline (AN) monomer, the concentration of GO and the number of assembly layers on the electrical properties and electromagnetic shielding properties of cotton fabrics were studied. The absorptivity, reflectivity, and shielding effectiveness due to absorption and reflection were analyzed. The results show that the increase of AN concentration and the number of assembling bilayer improve the electromagnetic shielding effectiveness of the fabric, but with the increase of GO concentration, the shielding effectiveness value of the fabric increases first and then decreases, the shielding effectiveness of fabric with 4 bilayers of GO/PANI reaches 19.91 dB, which could shield 98.98% of electromagnetic energy, the absorptivity of the fabric is 57.63%, and the reflectivity is 41.35%, the main shielding mechanism is absorption.

Key words: polyaniline, graphene oxide, layer-by-layer assembly, cotton fabric, electromagnetic shielding property, functional film

中图分类号: 

  • TS101.8

图1

棉、PANI涂层棉及GO/PANI涂层棉织物的红外光谱"

图2

不同AN单体浓度、GO质量浓度和组装层数时GO/PANI涂层棉纤维前后的扫描电镜照片(×5 000)"

表1

苯胺浓度对氧化石墨烯/聚苯胺组装棉织物上载量、厚度及表面电阻的影响"

AN浓度/
(mol·L-1)
上载量/
(mg·cm-2)
厚度/
mm
表面电阻/
(Ω·□-1)
0.3 1.67±0.09 0.439±0.023 1 237.5±92.3
0.5 2.94±0.08 0.457±0.029 414.7±23.7
0.7 3.81±0.13 0.478±0.031 310.4±18.5
0.9 4.06±0.16 0.513±0.038 197.9±11.3

表2

氧化石墨烯质量浓度对涂层棉织物上载量、厚度及表面电阻的影响"

GO质量浓
度/(g·L-1)
上载量/
(mg·cm-2)
厚度/
mm
表面电阻/
(Ω·□-1)
0.2 0.87±0.09 0.437±0.021 356.8±19.8
0.4 2.19±0.08 0.461±0.028 216.7±13.7
0.6 3.81±0.13 0.478±0.031 310.4±18.5
0.8 4.36±0.16 0.496±0.035 874.5±45.9

表3

氧化石墨烯/聚苯胺组装层数对棉织物上载量、厚度及表面电阻的影响"

组装
层数
上载量/
(mg·cm-2)
厚度/
mm
表面电阻/
(Ω·□-1)
1 2.19±0.08 0.461±0.028 216.7±13.7
2 4.44±0.11 0.506±0.051 175.9±9.1
3 6.56±0.17 0.558±0.059 115.3±7.6
4 8.77±0.21 0.607±0.053 66.1±4.8

图3

AN浓度与GO/PANI涂层棉织物电磁屏蔽性能的关系"

图4

GO质量浓度与GO/PANI涂层棉织物电磁屏蔽性能的关系"

图5

组装层数与GO/PANI涂层棉织物电磁屏蔽性能关系"

图6

棉织物组装不同层数GO/PANI时其吸收率、反射率和透射率关系变化"

表4

不同条件下GO/PANI涂层棉织物电磁屏蔽效能的耐久性"

样品名称 屏蔽效能/dB
未洗涤参照样 19.91±2.00
去离子水中浸泡24 h 19.35±1.92
去离子水中超声30 min 19.05±2.11
洗衣液中超声30 min 18.91±2.04
[1] 曲华洋, 谢春萍, 徐伯俊 , 等. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018,39(6):52-58.
QU Huayang, XIE Chunping, XU Bojun , et al. Preparation of elastic radiation resistant textile based on double filament core-spun yarn[J]. Journal of Textile Research, 2018,39(6):52-58.
[2] 段永洁, 谢春萍, 刘新金 . 棉/不锈钢长丝机织物的电磁屏蔽及折皱回复性能[J]. 纺织学报, 2016,37(9):31-36.
DUAN Yongjie, XIE Chunping, LIU Xinjin . Electromagnetic shielding and wrinkle recovery property of cotton/stainless steel filament woven fabric[J]. Journal of Textile Research, 2016,37(9):31-36.
[3] 师艳丽, 李娜娜, 付元静 , 等. 用于纺织品表面改性的磁控溅射技术研究进展[J]. 纺织学报, 2016,37(4):165-169.
SHI Yanli, LI Nana, FU Yuanjing , et al. Research pro-gress of magnetron sputtering in textiles[J]. Journal of Textile Research, 2016,37(4):165-169.
[4] 缪润伍, 金丽华, 魏祺煜 , 等. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019,40(2):100-104.
MIAO Runwu, JIN Lihua, WEI Qiyu , et al. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials[J]. Journal of Textile Research, 2019,40(2):100-104.
[5] TUNAKOVA V, GREGR J, TUNAK M , et al. Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: optimization of process parameters[J]. Journal of Industrial Textiles, 2018,47(5):686-711.
doi: 10.1177/1528083716667262
[6] ZOU L, LAN C, LI X , et al. Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding[J]. Fibers and Polymers, 2015,16(10):2158-2164.
doi: 10.1007/s12221-015-5436-1
[7] YUAN Y, YIN W, YANG M , et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon, 2018,130:59-68.
doi: 10.1016/j.carbon.2017.12.122
[8] HAJI A, RAHBAR R, SHOUSHTARI A . Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology[J]. Applied Surface Science, 2014,311:593-601.
doi: 10.1016/j.apsusc.2014.05.113
[9] 张松林, 邹梨花, 张梓萌 , 等. 氧化石墨烯多层膜在棉织物上的层层组装及其电磁屏蔽性能[J]. 东华大学学报(自然科学版), 2016,42(1):30-34,39.
ZHANG Songlin, ZOU Lihua, ZHANG Zimeng , et al. Graphene oxide multilayer films on cotton fabrics through layer-by-layer assembly and its electromagnetic shielding property[J]. Journal of Donghua University(Natural Science Edition), 2016,42(1):30-34, 39.
[10] ESMAEELI A, GHAFFARINEJAD A, ZAHEDI A , et al. Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor[J]. Sensors and Actuators B: Chemical, 2018,266:294-301.
doi: 10.1016/j.snb.2018.03.132
[11] AHAD I, HARUN S, GAN S , et al. Polyani-line (PANI) optical sensor in chloroform detection[J]. Sensors and Actuators B: Chemical, 2018,261:97-105.
doi: 10.1016/j.snb.2018.01.082
[12] LI M, ZHOU S . Alpha-Fe2O3/polyaniline nanocom-posites as an effective catalyst for improving the electrochemical performance of microbial fuel cell[J]. Chemical Engineering Journal, 2018,339:539-546.
doi: 10.1016/j.cej.2018.02.002
[13] LIU H, ZOU Y, HUANG L , et al. Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium-ion batteries[J]. Applied Surface Science, 2018,442:204-212.
doi: 10.1016/j.apsusc.2018.02.023
[14] SHI M, BAI M, LI B . Synjournal of mesoporous crosslinked polyaniline using SDS as a soft template for high-performance supercapacitors[J]. Journal of Materials Science, 2018,53(13):9731-9741.
doi: 10.1007/s10853-018-2280-x
[15] JOSEPH N, VARGHESE J, SEBASTIAN M . A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks[J]. Journal of Materials Chemistry C, 2016,4(5):999-1008.
doi: 10.1039/C5TC03080C
[16] KOH Y, MOKHTAR N, PHANG S . Effect of microwave absorption study on polyaniline nanocomposites with untreated and treated double wall carbon nanotubes[J]. Polymer Composites, 2018,39(4):1283-1291.
doi: 10.1002/pc.v39.4
[17] JIANG L, SYED J, GAO Y , et al. Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel[J]. Applied Surface Science, 2018,440:1011-1021.
doi: 10.1016/j.apsusc.2018.01.145
[18] HOGHOGHIFARD S, MOKHTARI H, DEHGHANI S . Improving EMI shielding effectiveness and dielectric properties of polyaniline-coated polyester fabric by effective doping and redoping procedures[J]. Journal of Industrial Textiles, 2018,47(5):587-601.
doi: 10.1177/1528083716665630
[19] ENGIN F, USTA I . Development and characterisation of polyaniline/polyamide (PANI/PA) fabrics for electromagnetic shielding[J]. Journal of The Textile Institute, 2015,106(8):872-879.
doi: 10.1080/00405000.2014.950085
[20] ZHAO H, HOU L, BI S , et al. Enhanced X-Band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt-nickel coatings[J]. Acs Applied Materials & Interfaces, 2017,38(9):33059-33070.
[21] ZOU L, ZHANG S, LI X , et al. Nanocomposites: step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2016,3(5). DOI: 10.1002/admin.201670019.
doi: 10.1002/admi.201670022 pmid: 27088067
[22] SAINI P, CHOUDHARY V . Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2-12.4 GHz range[J]. Journal of Applied Polymer Science, 2013,129(5):2832-2839.
doi: 10.1002/app.38994
[23] GAUTAM V, SINGH K, YADAV V . Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: for electrochemical sensor applications[J]. Carbohydrate Polymers, 2018,189:218-228.
doi: 10.1016/j.carbpol.2018.02.029 pmid: 29580402
[24] RYBICKI T, STEMPIEN Z, RYBICKI E , et al. EMI shielding effectiveness of polyacrylonitrile fabric with polyaniline deposition by reactive ink-jet printing and model approach[J]. IEEE Transactions on Electromagnetic Compatibility, 2016,58(4):1025-1032.
doi: 10.1109/TEMC.15
[25] TISSERA N, WIJESENA R, RATHNAYAKE S , et al. Heterogeneous in situ polymerization of polyani-line (PANI) nanofibers on cotton textiles: improved electrical conductivity, electrical switching, and tuning properties[J]. Carbohydrate Polymers, 2018,186:35-44.
doi: 10.1016/j.carbpol.2018.01.027 pmid: 29455996
[26] 梁然然, 肖红, 王妮 . 双层及多层电磁屏蔽织物的屏蔽效能[J]. 纺织学报, 2017,38(9):51-58.
LIANG Ranran, XIAO Hong, WANG Ni . Shielding effectiveness of double and multilayer electromagnetic shielding fabric[J]. Journal of Textile Research, 2017,38(9):51-58.
[27] JI J, LI R, LI H , et al. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors[J]. Composites Part B: Engineering, 2018,155:132-137.
doi: 10.1016/j.compositesb.2018.08.037
[1] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[2] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[3] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[4] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[5] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[6] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[7] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[8] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[9] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[10] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/ 聚苯胺/ 聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[11] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[12] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[13] 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196.
[14] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[15] 高思梦, 王鸿博, 杜金梅, 王文聪. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(02): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 翁晓明. 胶辊改革过程中几个注意问题[J]. 纺织学报, 1987, 8(01): 9 .
[2] 吕美娟;周卫华;张宝军. 核-壳型乳液聚合在织物涂层剂研制中的应用[J]. 纺织学报, 1987, 8(11): 48 -50 .
[3] 许骏;梁之行. 气流纺纱微计算机测控系统[J]. 纺织学报, 1991, 12(11): 30 -32 .
[4] 于湖生;候仁澧;郑国宝;刘敏步. 后整理对苧麻/棉混纺针织物机械性能的影响[J]. 纺织学报, 1993, 14(04): 26 -30 .
[5] 吴庆源;夏渭滨. 开发涤棉纬长丝产品提高经济效益[J]. 纺织学报, 1985, 6(08): 40 -42 .
[6] 陈奇明. ZM-20型维面钢领与ZBE型钢丝圈鉴定会[J]. 纺织学报, 1985, 6(09): 64 .
[7] 薛元;马惠英. GA731(GD)剑杆织机基本性能及引纬机构分析[J]. 纺织学报, 1991, 12(04): 33 -35 .
[8] 金晨怡. 基于生活方式与视觉营销下的服装卖场设计[J]. 纺织学报, 2011, 32(2): 121 -126 .
[9] 吴烨芳;何天虹;姚金波;郭俊伟;梁成标. 单向导湿织物的开发[J]. 纺织学报, 2006, 27(6): 94 -96 .
[10] 龚绍堂. 牵伸加捻机成形模板与锭子变速凸轮设计分析[J]. 纺织学报, 1988, 9(11): 33 -34 .