纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 1-6.doi: 10.13475/j.fzxb.20180505906

• 纤维材料 •    下一篇

TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能

孙辉(), 张恒源, 咸玉龙, 周传凯, 于斌   

  1. 浙江理工大学 材料与纺织学院、丝绸学院, 浙江 杭州 310018
  • 收稿日期:2018-05-24 修回日期:2018-12-29 出版日期:2019-04-15 发布日期:2019-04-16
  • 作者简介:孙辉(1976—),女,讲师,博士。研究方向为生物可降解性纺织材料的功能化改性。E-mail:wlzxjylw@126.com
  • 基金资助:
    浙江省自然科学基金项目(LY19E030011);浙江省公益性技术应用研究计划项目(2017C33077)

Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers

SUN Hui(), ZHANG Hengyuan, XIAN Yulong, ZHOU Chuankai, YU Bin   

  1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-05-24 Revised:2018-12-29 Online:2019-04-15 Published:2019-04-16

摘要:

为赋予聚乳酸(PLA)纤维高效的抗菌性能,采用熔融共混纺丝法分别制备了不同质量配比的二氧化钛接枝银纳米介孔微球(TiO2-Ag)/PLA纳米复合纤维和一定组成的TiO2/PLA纳米复合纤维,并对2种纤维的结构、热性能和抗菌性能等进行表征和分析。结果表明:当TiO2-Ag和TiO2这2种纳米粒子添加质量分数不超过3%时,可在PLA基体中较均匀地分散;2种粒子的加入均不影响PLA的玻璃化转变温度和结晶结构,但会使其熔融温度和热稳定性下降,加入质量分数为3%的TiO2后,导致PLA的结晶温度略有下降;随着TiO2-Ag质量分数的增加, TiO2-Ag/PLA纳米复合纤维对金黄色葡萄球菌和大肠杆菌的抑菌率不断增加;添加相同量的2种纳米粒子时,TiO2-Ag/PLA复合纤维对2个菌种的抑制效果明显优于TiO2/PLA复合纤维。

关键词: 聚乳酸, TiO2-Ag纳米介孔微球粒子, 纳米复合纤维, 抗菌性能

Abstract:

In order to endow the efficient antibacterial properties for poly(lactic acid) (PLA) fiber, the various mass ratios of TiO2-Ag/PLA nano-composite fibers were prepared by melt spinning. Moreover, TiO2/PLA nano-composite fiber with the certain mass ratio was also prepared under the same conditions. The structure, thermal properties and antibacterial properties of the two kinds of the nano-composite fibers were investigated and contrasted. The results show that two kinds of nano-particles can uniformly dispersed in PLA matrix when the contents of the nanoparticles are no more than 3%. The addition of two nano-particles have almost no influence on the glass transition temperature and crystalline structure of PLA, whereas their cooperation in PLA matrix decreases the melting temperature and thermal stability of PLA. Furthermore, when TiO2 nano-particles with the mass content of 3% are added, the crystalline temperature of PLA slightly reduces. The antibacterial ratio against Staphylococcus aureus and Escherichia coil of TiO2-Ag/PLA nano-composite fibers enhances with the increasing in the content of TiO2-Ag. When two kinds of nano-particles with the same mass ratio are added, TiO2-Ag/PLA nano-composite fiber has the higher antibacterial ratio against the two bacteria compared with TiO2/PLA nano-composite fiber.

Key words: poly(lactic acid), TiO2-Ag nano-mesoporous microsphere particle, nano-composite fiber, antibacterial property

中图分类号: 

  • TB332

表1

样品的不同配料比例"

样品编号 PLA TiO2-Ag TiO2
0# 100
1# 99 1
2# 97 3
3# 95 5
4# 97 3

图1

纯PLA及其纳米复合纤维的红外谱图"

图2

纯PLA及其纳米复合纤维断面的扫描电镜照片"

图3

纯PLA及其纳米复合纤维的DSC曲线"

表2

PLA及其纳米复合纤维的热性能参数"

样品编号 Tg Tc Tm1 Tm2 Xc T5% T95%
0# 62.4 117.4 154.4 166.4 32.6 337.7 386.3
1# 62.3 117.3 153.3 165.3 32.9 337.0 384.3
2# 62.8 117.2 154.3 164.8 33.7 315.1 371.1
3# 63.3 117.1 154.8 164.1 33.1 302.8 373.2
4# 62.2 114.5 152.1 163.1 32.4 300.4 365.4

图4

纯PLA及其纳米复合纤维的TG曲线"

图5

纯PLA及其纳米复合纤维的XRD谱图"

表3

PLA及其纳米复合纤维对金黄色葡萄球菌和大肠杆菌的抑菌率"

样品编号 金黄色葡萄球菌 大肠杆菌
0# 0.0 0.0
1# 70.0 77.7
2# 97.4 98.8
3# 99.5 99.8
4# 79.0 75.3
[1] 严之红, 陈小峥, 符雪彩, 等. 34例中心静脉导管相关感染病例调查[J]. 中国感染控制杂志, 2016,15(5):352-354.
YAN Zhihong, CHEN Xiaozheng, FU Xuecai, et al. Report of 34 cases of central venous catheter related infection[J]. Chinese Journal of Infection Control, 2016,15(5):352-354.
[2] XU W H, SHEN R Z, YAN Y R, et al. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospin-ning[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017,65(1):428-438.
[3] 贾琳, 王西贤, 张海霞, 等. 聚乳酸/胶原蛋白取向纳米纤维支架的性能[J]. 纺织学报, 2016,37(11):8-13.
JIA Lin, WANG Xixian, ZHANG Haixia, et al. Performance of aligned polylactic acid/collagen nanofibrous scaffolds[J]. Journal of Textile Research, 2016,37(11):8-13.
[4] 王利君, 熊杰, 骆菁菁, 等. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能研究[J]. 纺织学报, 2017,38(5):8-13.
WANG Lijun, XIONG Jie, LUO Jingjing, et al. Structure and properties of polylactic acid-polycaprolactone/silk fibroin composite nanofibrous scaffolds[J]. Journal of Textile Research, 2017,38(5):8-13.
[5] TONIATTO T V, RODRIGUES B V M, MARSI T C O, et al. Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: insights into bactericidal activity and cell viability[J]. Materials Science and Engineering: C, 2017,71(2):381-385.
[6] PIERCHALA M K, MAKAREMI M, TAN H L, et al. Nanotubes in nanofibers: antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application[J]. Applied Clay Science, 2018,160(9):95-105.
[7] PLAN N, DUBEY P, GOPINATH P, et al. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity[J]. International Journal of Biological Macromolecules, 2017,95:94-105.
doi: 10.1016/j.ijbiomac.2016.11.041 pmid: 27856322
[8] WANAG A, ROKICKA P, KUSIAK-NEJMAN E, et al. Antibacterial properties of TiO2 modified with reduced graphene oxide[J]. Ecotoxicology and Environmental Safety, 2018,147(1):788-793.
[9] HAIDER A J, AL-ANBARI R H, KADHIM G R, et al. Exploring potential environmental applications of TiO2 nanoparticles[J]. Energy Procedia, 2017,119(14):332-345.
doi: 10.1016/j.egypro.2017.07.117
[10] WU L Z, YU Y, SONG L, et al. M\TiO2 (M=Au, Ag) transparent aqueous sols and its application on polymeric surface antibacterial post-treatment[J]. Journal of Colloid and Interface Science, 2015,446(10):213-217.
[11] HOSSEINI-ZORI M. Co-doped TiO2 nanostructures as a strong antibacterial agent and self-cleaning cover: synjournal, characterization and investigation of photocatalytic activity under UV irradiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2018,178(1):512-520.
[12] HE Y, ZHOU B, LIANG H S, et al. Silver nanoparticles on flower-like TiO2-coated polyacrylonitrile nanofibers: catalytic and antibacterial applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017,529(18):380-386.
[13] MOTLAGH A L, BASTANIS S, HASHMEI M M. Investigation of synergistic effect of nano sized Ag/TiO2 particles on antibacterial, physical and mechanical properties of UV-curable clear coatings by experimental design[J]. Progress in Organic Coatings, 2014,77(2):502-511.
[14] 周传凯, 于斌, 孙辉, 等. 溶胶凝胶法制备TiO2-Ag的介孔微球及其抗菌性能研究[J]. 浙江理工大学学报(自然科学版), 2017,37(4):485-490.
ZHOU Chuankai, YU Bin, SUN Hui, et al. Preparation of TiO2-Ag mesoporous microspheres by gel-sol method and analysis of its antibacterial property[J]. Journal of Zhejiang Sci-Tech University (Natural Science Edition), 2017,37(4):485-490.
[15] NAM J Y, RAY S S, OKAMOTO M. Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite[J]. Macromolecules, 2003,36(19):7126-7131.
[16] CIFUENTES C, LIEBLICH M, LÓPEZA F A, et al. Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion[J]. Material Science and Engineering: C, 2017,72:18-25.
[17] IKADA Y, JAMSHIDI K, TSUJI H, et al. Stereocomplex formation between enantiomeric poly(lactides)[J]. Macromolecules, 1987,20(4):904-906.
[18] ZHANG H, PIN C M, DANIEL M B, et al. Bactericidal mode of titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000,130(2/3):163-170.
[19] KAYANO S, TOSHIYA W, KAZUHITO H. Studies on photokilling of bacteria on TiO2 thin film[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003,156(1-3):227-233.
[20] JONES S A, BOWLER P G, WALKER M, et al. Controlling wound bioburden with a novel silver-containing hydrofiber dressing[J]. Wound Repair Regen, 2004,12(3):288-294.
doi: 10.1111/j.1067-1927.2004.012304.x pmid: 15225207
[21] ASHKARRAN A A, AGHIGH S M, KAVIANIPOUR M, et al. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents[J]. Current Applied Physics, 2011,11(4):1048-1055.
[1] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[2] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[3] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[4] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[5] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[6] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[7] 吴倩倩, 李珂, 杨立双, 付译鋆, 张瑜, 张海峰. 载药聚偏氟乙烯伤口敷料的制备及其性能 [J]. 纺织学报, 2020, 41(01): 26-31.
[8] 张治斌, 李刚, 毛森贤, 厉巽巽, 陈玉霜, 毛青山, 李翼, 潘志娟, 王晓沁. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12.
[9] 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26.
[10] 王文聪, 范静静, 丁超, 王鸿博. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(08): 117-123.
[11] 吴娇, 于湖生, 万兴云, 田平, 李慧敏, 侯晓欣. 抗菌防螨防霉功能改性粘胶纤维的制备及其性能[J]. 纺织学报, 2019, 40(07): 19-23.
[12] 黄程博, 任学宏. 静电纺抗菌聚丙烯腈纳米纤维膜制备及其性能[J]. 纺织学报, 2019, 40(05): 7-11.
[13] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[14] 董浩, 张丽平, 刘怡宁, 王乐军, 刘亚运, 付少海. 聚乳酸纤维原液着色用改性炭黑的制备及其性能[J]. 纺织学报, 2019, 40(05): 64-69.
[15] 李晓川, 瞿芊芊, 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019, 40(03): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!