纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 12-17.doi: 10.13475/j.fzxb.20180605906
MO Dajie1, LI Xuming1,2(), XU Zenghui3
摘要:
为制备具有阻燃性的生物可降解纤维,将聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)(PHBV)、聚乳酸(PLA)和聚磷酸铵(APP)通过熔融共混方式制备PHBV/PLA/APP复合材料并进行熔融纺丝,同时对其热学性能、热稳定性、拉伸性能和阻燃性能进行表征。结果表明:APP的引入对复合材料的冷结晶温度和熔融温度没有明显影响;随着APP质量分数的增加,复合材料的热稳定性和残炭率提高;随着牵伸倍数的增加,PHBV/PLA/APP复合纤维的断裂强度增大,且其断裂强度随APP的质量分数的增加呈先增加后减小趋势,当APP质量分数为5%时,断裂强度出现最大值;复合纤维的阻燃性能随APP质量分数的增加而提高,当APP质量分数达到10%时,阻燃效果最佳,其极限氧指数为32.3%,阻燃等级达到V-0级,且燃烧过程中无熔滴现象。
中图分类号:
[1] | ZEMBOUAI Idris, KACI Mustapha, BEMHAMIDA Aida, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly-lactide blends: thermal stability, flammability and thermo-mechanical behavior[J]. J Polym Environ, 2014: 131-139. |
[2] | LI Longzhen, HUANG Wei, WANG Bingjie, et al. Properties and structure of polylactide/poly (3-hydroxy-butyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers[J]. Polymer, 2015,68:183-194. |
[3] | 朱斐超, 韩建, 于斌, 等. 熔喷非织造用聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸双组分生物降解材料的可纺性能[J]. 纺织学报, 2016,37(2):21-27. |
ZHU Feichao, HAN Jian, YU Bin, et al. Study on spinnability of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyl valerate) / poly (1actic acid) blends for melt-blown nonwovens[J]. Journal of Textile Research, 2016,37(2):21-27. | |
[4] | JENNIFER G A, ESTEFANIA S S, JOSE M L, et al. Compatibilization of poly (3-hydroxybutyrate-co-3-hydroxy-valerate)-poly(lactic acid) blends with diisocyanates[J]. Journal of Applied Polymer Science, 2017(134):44806. |
[5] | 李旭明, 孙西超, 师利芬. 增强增韧聚乳酸纤维的制备及其性能[J]. 纺织学报, 2017,38(4):12-16. |
LI Xuming, SUN Xichao, SHI Lifen. Preparation and properties research of reinforcing and toughening PLA fiber[J]. Journal of Textile Research, 2017,38(4):12-16. | |
[6] | LIU Q, WU C, ZHANG H, et al. Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit:morphology,structure,and property[J]. Journal of Applied Polymer Science, 2015,132(42):42689. |
[7] |
MA P, SPOELSTRA A B, SCHMIT P, et al. Toughening of poly(1actic acid) by poly(β-phydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content[J]. European Polymer Journal, 2013,49(6):1523-1531.
doi: 10.1016/j.eurpolymj.2013.01.016 |
[8] | WANG Yuying, SHIH Yengfong. Flame-retardant recycled bamboo chopstick fiber-reinforced poly(lactic acid) green composites via multifunctional additive system[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016 (65):452-458. |
[9] | ZHU H, ZHU Q, LI J, et al. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide[J]. Polym Degrad Stab, 2011,96:183-189. |
[10] | MATK S, TOLDY A, KESZEI S, et al. Flame retardancy of biodegradable polymers and biocom-posites[J]. Polymer Degradation and Stability, 2005(88):138-145. |
[11] | HAPUARAEHEHI T D, PEIJS T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced compo-sites[J]. Composites Part A: Applied Science and Manufacturing 2010(41):954-963. |
[12] | SHUKOR F, HASSAN A, ISLAM M S, et al. Effect of ammonium polyphosphate on flame retardancy, thermalstability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites[J]. Material and Design 2014(54):425-429. |
[13] | VAHABI Henri, SHABANIAN Meisam, ARYANASAB Fezzeh, et al. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid)[J]. Thermochimica Acta 2018(666):51-59. |
[14] | PRABHAKAR M N, REHMAN S A U, SONG J I, et al. Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green Composites[J]. Carbohydrate Polymers 2017(168):201-211. |
[15] | REALINHO Vera, HAURIE Laia, FORMOSA Joan, et al. Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinatein acrylonitrile-butadiene-styrene[J]. Polymer Degradation and Stability 2018(155):208-219. |
[16] | KHANAL Santosh, ZHANG Weipeng, AHMED Saad, et al. Effects of intumescent flame retardant system consisting of tris(2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites[J]. Composites Part A: Applied Science and Manufacturing 2018(112):444-451. |
[17] | JEENCHAM Rachasit, SUPPAKAM Nitinat, JARUKUMJORN Kasama. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisalfiber/polypropylene composites[J]. Composites Part B: Engineering 2014(56):249-253. |
[18] | YANG Xing, ZHANG Wei. Flame Retardancy of Wood-Polymeric Composites[M]. Amsterdam: Elsvier, 2019: 285-317. |
[19] | WANG Ming, WU Ying, LI Yidong, et al. Progress in toughening poly(lactic acid) with renewable polymers[J]. Polymer Reviews 2017(57):557-593. |
[1] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[2] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[3] | 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31. |
[4] | 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14. |
[5] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[6] | 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37. |
[7] | 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24. |
[8] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[9] | 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7. |
[10] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105. |
[11] | 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6. |
[12] | 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78. |
[13] | 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8. |
[14] | 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12. |
[15] | 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26. |
|