纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 14-19.doi: 10.13475/j.fzxb.20180701006

• 纤维材料 • 上一篇    下一篇

羧甲基纤维素钠改性角蛋白膜的结构与性能

刘淑萍1,2,3(), 李亮2,3,4, 刘让同1,2,3, 崔世忠2,3,4, 王艳婷2,3,4   

  1. 1.中原工学院 服装学院, 河南 郑州 450007
    2.纺织服装产业河南省协同创新中心,河南 郑州 450007
    3.河南省功能性纺织材料重点实验室, 河南 郑州 450007
    4.中原工学院 纺织学院, 河南 郑州 450007
  • 收稿日期:2018-07-04 修回日期:2019-03-09 出版日期:2019-06-15 发布日期:2019-06-25
  • 作者简介:刘淑萍(1978—),女,讲师,博士。主要研究方向为纺织新材料、高分子材料的研究与开发。E-mail: lsp667@sina.com
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100)

Structure and properties of keratin film modified by carboxymethyl cellulose sodium

LIU Shuping1,2,3(), LI Liang2,3,4, LIU Rangtong1,2,3, CUI Shizhong2,3,4, WANG Yanting2,3,4   

  1. 1. The School of Fashion Technology, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. Henan Provincial Collaborative Innovation Center of Textile and Clothing, Zhengzhou, Henan 450007, China
    3. Henan Provincial Key Laboratory of Functional Textile Materials, Zhengzhou, Henan 450007, China
    4. The School of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
  • Received:2018-07-04 Revised:2019-03-09 Online:2019-06-15 Published:2019-06-25

摘要:

为改善羊毛角蛋白的成膜性能,以羧甲基纤维素钠(CMCNa)为改性剂,将其与羊毛角蛋白进行共混制备改性羊毛角蛋白膜。借助激光显微镜、红外光谱仪、X射线衍射仪以及热性能分析仪等对羧甲基纤维素钠改性膜的结构与性能进行表征。结果表明:经CMCNa改性的羊毛角蛋白膜,其结构更加致密,热稳定性和疏水性增强,伸长率由未改性前的1.8%增加至6.4%;改性羊毛角蛋白膜在水中的降解性由原来的20.4%增加至78.6%,但其强度由原来的35 MPa降低至16.3 MPa;CMCNa与羊毛角蛋白在共混过程中由于氢键的相互作用,降低了角蛋白的分子内氢键作用力,同时CMCNa的加入使羊毛角蛋白膜的结晶结构由原来的α-螺旋结晶结构转变为α-螺旋和 β-折叠共存的结晶结构。

关键词: 羊毛角蛋白膜, 羧甲基纤维素钠, 改性膜, 结晶结构, 力学性能

Abstract:

In order to improve film-forming properties of keratin, carboxymethyl cellulose sodium (CMCNa) was used as the modifier and blended with wool keratin to prepare a wool keratin film. The performances of the modified film were characterized by laser microscopy, infrared spectroscopy, X-ray diffraction, thermal properties, etc. The results indicate that the addition of CMCNa makes the structure of keratin membrane much denser, and improves its thermal stability and hydrophobicity. Moreover, its elongation increases from 1.8% to 6.4%, and its degradation in water also increases from 20.4% to 78.6%. However, its strengthen decreases from 35 MPa to 16.3 MPa. The reason is that inter-molecular hydrogen bond interaction between CMCNa and keratin occurs during the blending process, which reduces the intra-molecular hydrogen bonding of keratin. Further, with the addition of CMCNa, the crystal structure of modified membrane changes from the alpha-helical structure of wool keratin to the structure of both alpha-helical and beta-folded crystals.

Key words: wool keratin film, carboxymethyl cellulose sodium, modified film, crystalline structure, mechanical property

中图分类号: 

  • TS102.3

图1

羧甲基纤维素钠改性羊毛角蛋白膜机制"

图2

角蛋白膜与CMCNa改性膜的表面形态结构(×1 000)"

图3

角蛋白膜、CMCNa膜及其改性膜的红外光谱图"

图4

角蛋白膜、CMCNa膜及其改性膜的XRD结晶结构"

图5

角蛋白膜、CMCNa改性膜在不同温度时的热稳定曲线"

图6

角蛋白膜、CMCNa改性膜不同时间的接触角变化曲线"

图7

角蛋白膜、CMCNa改性膜的拉伸曲线"

[1] 邓湘文, 尹国强, 张步宁, 等. 热压羽毛角蛋白膜的制备及性能表征[J]. 化工新型材料, 2015,43(8):60-62.
DENG Xiangwen, YIN Guoqiang, ZHANG Buning, et al. Preparation and property of compression-molding feather keratin films[J]. New Chemical Materials, 2015,43(8):60-62.
[2] ROUSE J G, VAN D M E. A review of keratin-based biomaterials for biomedical applications[J]. Materials, 2010,3(2):999-1014.
[3] CARDAMONE J M. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR)[J]. Journal of Molecular Structure, 2010,969:97-105.
[4] 袁祖纯, 黄水旺, 吴红熹, 等. 羊毛角蛋白膜的制备和热性能分析[J]. 纺织科技进展, 2012(2):36-38.
YUAN Zuchun, HUANG Shuiwang, WU Hongxi, et al. Preparation of wool keratin film and analysis of its thermal property[J]. Progress in Textile Science & Technology, 2012(2):36-38.
[5] 张恒, 李戎, 王魁, 等. 还原法与离子液体溶解法制备羊毛角蛋白膜[J]. 纺织学报, 2015,36(6):55-59.
ZHANG Heng, LI Rong, WANG Kui, et al. Preparation of wool keratin membranes prepared by ionic liquid method and reduction C method[J]. Journal of Textile Research, 2015,36(6):55-59.
[6] 潘军强, 姚金波, 贾书刚. 羊毛角蛋白/PVA共混薄膜的性能分析[J]. 毛纺科技, 2015,43(3):25-28.
PAN Junqiang, YAO Jinbo, JIA Shugang. The performance analysis of wool keratin/PVA hybrid film[J]. Wool Textile Journal, 2015,43(3):25-28.
[7] 张玉荣, 刘建勇, 王洁. 乙二醇二缩水甘油醚交联羊毛角蛋白[J]. 材料导报, 2013,27(21):230-232.
ZHANG Yurong, LIU Jianyong, WANG Jie. Cross-linking of wool's keratin by ethylene glycol diglycidyl ether[J]. Materials Review, 2013,27(21):230-232.
[8] 李慧, 卢立新, 王利强. 海藻酸钠-羧甲基纤维素钠-明胶共混膜的结构及性能研究[J]. 食品科学, 2010(5):91-95.
LI Hui, LU Lixin, WANG Liqiang. Structure and properties of sodium alginate-sodium carboxymethyl cellulose gelatin compound film[J]. Food Science, 2010(5):91-95.
[9] 曾春慧, 张延林, 刘春光, 等. 改性羊毛角蛋白复合膜的性能与结构[J]. 中国皮革, 2014,43(23):13-18.
ZENG Chunhui, ZHANG Yanlin, LIU Chunguang, et al. Structure and properties of modified wool keratin composite membrane[J]. China Leather, 2014,43(23):13-18.
[10] WANG Ming, ZHAO Tao, WANG Gehui, et al. Blend films of human hair and cellulose prepared from an ionic liquid[J]. Textile Research Journal, 2014,84(12):1315-1324.
[11] HUSON M, CHURCH J S, HEINTZE G. Spectroscopy, microscopy and thermal analysis of the bi-modal melting of Merino wool[J]. Wool Technology and Sheep Breeding, 2002,50(1):64-75.
[12] 苟明霞. 羊毛角蛋白膜的制备及其结构性能的研究[D]. 苏州: 苏州大学, 2011: 23-32.
GOU Mingxia. Preparation and study on the structure and properties of wool keratin films[D]. Suzhou: Soochow University, 2011: 23-32.
[13] CHO H J, BALAKRISHNAN P, SHIM W S, et al. Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron-cyclodextrin complex and carboxymethyl cellulose[J]. International Journal of Pharmaceutics, 2010,400:59-65.
doi: 10.1016/j.ijpharm.2010.08.030 pmid: 20801202
[14] AYUTTHAYA S I, TANPICHAI S, WOOT-THIKANOKKHAN J. Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns[J]. Journal of Polymers and the Environment, 2015,23:506-516.
[15] HAGEGE R, CONNET J. Thermal analysis and morphology of the heat degradation of wool and mohair[C]// 6th Quinquennial International Wool Textile Research Conference on Proceedings of the Structure and Chemical Reactions of Keratins.[s.n.]: Prectoria, 1980: 221-224.
[1] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[4] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[5] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[6] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[7] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[8] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[9] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[10] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[11] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[12] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[13] 刘金鑫 张海峰 张星 黄晨 郑晓冰 靳向煜. 多级拉伸与热定型对聚乙烯/ 聚丙烯双组分纤维结构和性能的影响 [J]. 纺织学报, 2019, 40(05): 24-29.
[14] 莫达杰 李旭明 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯) / 聚乳酸阻燃纤维的制备及其性能 [J]. 纺织学报, 2019, 40(05): 12-17.
[15] 刘冰倩 盛丹 潘恒 曹根阳. N,N-二甲基乙酰胺/ 氯化钙体系对热致液晶聚芳酯纤维结构及性能的影响[J]. 纺织学报, 2019, 40(04): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!