纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 135-140.doi: 10.13475/j.fzxb.20180701106

• 染整与化学品 • 上一篇    下一篇

紫外光固化石墨烯涂层棉织物的导电性能

曹机良(), 徐李聪, 孟春丽, 李晓春   

  1. 河南工程学院 材料与化学工程学院, 河南 郑州 450007
  • 收稿日期:2018-07-11 修回日期:2018-11-01 出版日期:2019-02-15 发布日期:2019-02-01
  • 作者简介:曹机良(1982—),男,副教授,博士。主要研究方向为石墨烯导电纺织材料的制备及应用、纺织品染整工艺与理论研究。E-mail: caojiliang301@163.com
  • 基金资助:
    河南省高等学校重点科研项目(18B540001);河南工程学院博士基金资助项目(Dkj2018005)

Electric conductivity of cotton fabrics by graphene UV curable coating

CAO Jiliang(), XU Licong, MENG Chunli, LI Xiaochun   

  1. Department of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
  • Received:2018-07-11 Revised:2018-11-01 Online:2019-02-15 Published:2019-02-01

摘要:

为获得柔性导电纺织材料,采用紫外(UV)光固化技术将还原氧化石墨烯(RGO)印制于棉织物表面。探究了RGO、聚氨酯丙烯酸酯(PUA)、光引发剂1173和三羟甲基丙烷三丙烯酸酯(TMPTA)质量分数及UV光固化时间对棉织物导电性能的影响,测试了整理织物的导电性和导电耐久性,通过扫描电子显微镜分析对整理织物的形貌。研究结果表明,随着RGO质量分数增加,织物的导电性增强,但导电耐久性降低,随着PUA、光引发剂1173和TMPTA质量分数增加及固化时间延长,织物的导电性降低但导电耐久性提高;RGO质量分数增加,织物表面沉积的RGO越多,RGO导电层的连续性提高。当RGO、PUA、TMPTA和光引发剂1173的质量比为10:4:69:17,固化时间15 s时印制出来的棉织物的导电性、导电耐久性最佳。

关键词: 可穿戴, UV光固化, 智能纺织品, 导电性能, 石墨烯

Abstract:

Reduced graphene oxide (RGO) was used to print on the surface of cotton fabrics to obtain flexible conductive textile materials by UV-curing technology. The mass concentration of RGO, polyurethane acrylate (PUA), photoinitiator 1173 and trimethylolpropane triacrylate (TMPTA) and the curing time on conductive properties of cotton fabric was explored. The conductivity of cotton fabrics were tested, and the morphology of RGO printed on the surface of cotton fabrics was characterized by scanning electron microscopy. The results show that the conductivity of cotton fabrics increases with the increasing of RGO mass concentration. The electrical durability, however, decreases with the increasing of RGO mass concentration. The conductivity of cotton fabrics decreases with the increasing of PUA, photoinitiator 1173 and TMPTA mass concentration, and the electrical durability increases at the same time. The SEM test results show that with the increasing of RGO mass concentration, the amount of RGO coated on the surface of cotton fabrics is increased, and the continuity of RGO conductive layer is enhanced. It is concluded that the optimal UV curable pringting process is the mass ratio of RGO, PUA, TMPTA and photoinitiator 1173 10:4:69:17, curing for 15 s, the printed cotton fabrics obtain excellent electrical conductivity and electrical durability.

Key words: wearable, UV curable, smart textile, electrical conductivity of cotton fabric, graphene

中图分类号: 

  • TS195.5

图1

RGO质量分数和固化时间对棉织物导电性能的影响"

图2

固化时间对棉织物导电耐久性的影响"

图3

PUA质量分数对棉织物导电耐久性的影响"

表1

光引发剂质量分数对棉织物导电耐久性的影响"

光引发剂质
量分数/%
电阻/(kΩ·cm-1)
未处理织物 干摩后 湿摩后 水洗后
0 2.441 1.826 2.405 247.750
8 5.235 3.793 4.779 49.713
17 7.943 5.801 6.235 12.312
23 13.359 10.156 11.811 18.013
29 19.528 15.203 17.683 21.619

表2

TMPTA质量分数对棉织物导电耐久性的影响"

TMPTA质量
分数/%
电阻/(kΩ·cm-1)
未处理织物 干摩后 湿摩后 水洗后
36 6.899 6.970 8.206 16.324
53 7.661 6.924 8.664 13.211
69 8.694 8.309 9.416 9.863
77 13.663 16.557 15.388 14.463

图4

RGO 紫外光固化棉织物的表面形貌照片 (×2 000)"

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669.
doi: 10.1126/science.1102896 pmid: 15499015
[2] ALI UMAR M I, YAP C C, AWANG R, et al. Characterization of multilayer graphene prepared from short-time processed graphite oxide flake[J]. Journal of Materials Science: Materials in Electronics, 2012,24(4):1282-1286.
[3] 杨晨啸, 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018,39(5):160-169.
YANG Chenxiao, LI Li. Integration of soft intelligent textile and functional fiber[J]. Journal of Textile Research, 2018,39(5):160-169.
[4] 赵兵, 祁宁, 徐安长, 等. 石墨烯/蚕丝复合材料研究进展[J]. 纺织学报, 2018,39(10):168-174.
ZHAO Bing, QI Ning, XU Anchang, et al. Research progress on graphene/silk composite materials[J]. Journal of Textile Research, 2018,39(10):168-174.
[5] 余改丽, 张弘楠, 张娇娇, 等. 高效低阻聚丙烯腈/石墨烯纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2017,38(2):26-33.
YU Gaili, ZHANG Hongnan, ZHANG Jiaojiao, et al. Preparation and antibacterial property of high-efficiency low-resistance polyacrylonitrile/graphene nanofiber membrane for gas filtration[J]. Journal of Textile Research, 2017,38(2):26-33.
[6] 张克勤, 杜德壮. 石墨烯功能纤维[J]. 纺织学报, 2016,37(10):153-157.
ZHANG Keqin, DU Dezhuang. Functional fibers based on graphene[J]. Journal of Textile Research, 2016,37(10):153-157.
[7] RODRIGUEZ-LOZANO F J, GARCIA-BERNAL D, AZNAR-CERVANTES S, et al. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells[J]. Journal of Materials Science: Materials in Medicine, 2014,25(12):2731-2741.
doi: 10.1007/s10856-014-5293-2 pmid: 25081645
[8] GURUNATHAN S, HAN J W, EPPAKAYALA V, et al. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells[J]. Nanoscale Research Letters, 2013,8(1):393.
doi: 10.1186/1556-276X-8-393 pmid: 24059222
[9] KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nanoparticles[J]. Journal of the Textile Institute, 2015,107(9):1122-1134.
[10] ZHENG X, YAO L, MEI X, et al. Comparing effects of thermal annealing and chemical reduction treatments on properties of wet-spun graphene fibers[J]. Journal of Materials Science, 2016,51(21):1-13.
[11] CAO J, WANG C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method[J]. Applied Surface Science, 2017,405:380-388.
[12] MIN X, SHENG D X, ZHONG M Y, et al. The influence of thermal treatment conditions on the structures and electrical conductivities of graphite oxide[J]. New Carbon Materials, 2004,19(2):92-96.
[13] PERES N M R. Colloquium: the transport properties of graphene: an introduction[J]. Physics, 2010,82(3):2673-2700.
[14] NERAL B, ŠOSTAR-TURK S, VONČINA B. Properties of UV-cured pigment prints on textile fabric [J]. Dyes & Pigments, 2006,68(2):143-150.
[1] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[2] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[3] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[4] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[5] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[6] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[7] 刘爱荣, 陈艳敏, 葛凤燕, 蔡再生, 王娟. 纤维基表面增强拉曼基底的研究进展[J]. 纺织学报, 2020, 41(05): 176-183.
[8] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[9] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[10] 陈慧, 王玺, 丁辛, 李乔. 基于全织物传感网络的温敏服装设计[J]. 纺织学报, 2020, 41(03): 118-123.
[11] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[12] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[13] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[14] 李柽安, 鲁虹. 腰部运动损伤防护智能服装的研发[J]. 纺织学报, 2020, 41(02): 119-124.
[15] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!