纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 38-43.doi: 10.13475/j.fzxb.20180704006

• 纺织工程 • 上一篇    下一篇

碳纤维织物在热流冲击下的热传递数值模拟

郑振荣1,2(), 智伟1, 韩晨晨1, 赵晓明1, 裴晓园1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
  • 收稿日期:2018-07-16 修回日期:2019-03-11 出版日期:2019-06-15 发布日期:2019-06-25
  • 作者简介:郑振荣(1981—),女,副教授。主要从事功能防护纺织品的开发。E-mail: tianjinzhengzr@163.com
  • 基金资助:
    天津市科委自然科学基金项目(18JCYBJC86600);中国纺织工业联合会科技指导性项目(2017030, 2018051);天津市教委科研计划项目(2018KJ194)

Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux

ZHENG Zhenrong1,2(), ZHI Wei1, HAN Chenchen1, ZHAO Xiaoming1, PEI Xiaoyuan1   

  1. 1. School of Textile Science and Engieering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-07-16 Revised:2019-03-11 Online:2019-06-15 Published:2019-06-25

摘要:

为研究纺织材料在热流冲击下的热传递性能,以碳纤维平纹织物为例,利用电子显微镜获得纱线的几何结构参数、经纬纱交织路径及横截面形状,建立碳纤维织物单元结构模型,基于传热学的基本方程,利用有限元法数值求解织物厚度方向上的温度随时间变化曲线。结果表明:利用创建的热流冲击下织物热传递数值模型可预测织物背面温度随时间变化的情况;试验验证发现,利用数值模型计算获得的织物背面温度随时间的变化趋势与试验结果一致,当织物表面分别施加热流密度为1 319 W/m2和1 103 W/m2时,织物背面温度的模拟值和试验值的平均相对误差分别为6.64%和3.28%。说明所建立的数值模型能较好地反映碳纤维平纹织物动态传热过程,可为高温热流冲击下隔热耐烧蚀织物的开发和性能优化提供理论参考。

关键词: 碳纤维织物, 热传递, 三维几何模型, 数值模拟, 热流密度

Abstract:

In order to study the heat transfer performance of textile materials under the impact of convective heat flux, taking the carbon fiber plain weave fabric as an example, the geometric parameters of yarn, the weaving path and cross-section shape of warp and weft yarns were obtained by scanning electron microscopy. Then a 3-D structural model of carbon fiber fabric was established. Based on the basic equation of heat transfer, the temperature variation curve in the direction of fabric thickness was solved numerically by finite element method. The results show that the heat transfer numerical model can be adopted to predict the temperature of the fabric back changing with time. It is found by experiments that the variation trend of fabric back temperature obtained with the numerical model is correlated with the experimental results. When heat flux is 1 319 W/m2 and 1 103 W/m2, respectively, the average relative errors of simulated and experimental values of fabric back temperature are 6.64% and 3.28%. It is indicated that the numerical model can better reflect the dynamic heat transfer process of carbon fiber fabric, which can provide an effective theoretical reference for the development of heat protective fabrics under high heat flux in the future.

Key words: carbon fiber fabric, heat transfer, 3-D geometric model, numerical simulation, heat flux density

中图分类号: 

  • TS101.3

图1

碳纤维织物"

图2

碳纤维织物在对流热冲击下的热量传递机制"

表1

材料的热物性参数"

材料 质量密度/
(kg·m-3)
导热系数/
(W·m-1·K-1)
定压比热容/
(J·kg-1·K-1)
空气 1.06 0.029 1 005
碳纤纱 1 798.90 0.528 1 318

图3

碳纤维织物模型网格划分"

图4

对流载荷"

图5

辐射热载荷"

图6

验证试验示意图"

图7

织物模型厚度方向温度分布"

图8

织物模型中纱线的温度分布"

图9

织物背面温度分布"

[1] SHA X G, CHEN X, JI F, et al. Study on correlation of aerodynamic heating data of a combination model[J]. Procedia Engineering, 2015,99:1604-1609.
[2] SIDDIQUI M O R, SUN D. Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric[J]. Computational Materials Science, 2013,75(12):45-51.
[3] KAMRAN D. Thermal analysis and design of multi-Layer insulation for re-entry aerodynamic heating[J]. Journal of Spacecraft and Rockets, 2002,39(4):509-514.
[4] JI T, ZHANG R, SUNDEN B, et al. Investigation on thermal performance of high temperature multilayer insulations for hypersonic vehicles under aerodynamic heating condition[J]. Applied Thermal Engineering, 2014,70(1):957-965.
[5] 樊钰, 叶定友, 杨月诚. 复合材料壳体气动加热温度场研究[J]. 固体火箭技术, 2013,36(3):381-384.
FAN Yu, YE Dingyou, YANG Yuecheng. Research on the temperature field of composite material case with aerodynamic heating[J]. Journal of Solid Rocket Technology, 2013,36(3):381-384.
[6] 李旭东, 张鹏, 尚明友, 等. 基于金星探测机械展开式进入飞行器技术述评[J]. 航天返回与遥感, 2015,36(2):1-8.
LI Xudong, ZHANG Peng, SHANG Mingyou, et al. Review of venus explorer mission using mechanically-deployed entry decelerator[J]. Spacecraft Recovery and Remote Sensing, 2015,36(2):1-8.
[7] AHMED Ghazy. Numerical study of air gap between fire-protective clothing and the skin[J]. Journal of Industrial Textiles, 2014,44(2):257-274.
[8] ZHAO Y X, SHI L M, LI Y L. Carbon fiber application analysis in the apparel field[J]. Advanced Materials Research, 2013, 734-737:2470-2474.
[9] 郭文文, 彭董挹海, 黄小双, 等. 碳纤维织物力学性能和冲压成形实验研究[J]. 材料科学与工艺, 2017,25(3):41-45.
GUO Wenwen, PENG Dongyihai, HUANG Xiaoshuang, et al. Experimental study on the mechanical properties and stamping forming of a carbon woven fabric[J]. Materials Science & Technology, 2017,25(3):41-45.
[10] 郑少明. 纱线横截面切片方法的研究[J]. 中国纤检, 2013(21):64-65.
ZHENG Shaoming. Study on the sectioning methods of yarn cross-section[J]. China Fiber Inspection, 2013(21):64-65.
[11] LIN H, BROWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research, 2011,331:44-47.
[12] 蔡雨, 郑天勇, 景书娟, 等. Peirce平纹机织物结构模型的计算精确度[J]. 纺织学报, 2012,33(1):48-53.
CAI Yu, ZHENG Tianyong, JING Shujuan, et al. Calculation accuracy of Peirce's plain woven fabric model for geometric struture of plain woven fabric[J]. Journal of Textile Research, 2012,33(1):48-53.
[13] 杨世铭, 陶文铨. 传热学[M]. 3版:北京:高等教育出版社, 1998: 25-28.
YANG Shiming, TAO Wenquan. Heat Transfer[M]. 3rd ed. Beijing: Higher Education Press, 1998: 25-28.
[14] 刘彦丰, 高正阳, 梁秀俊. 传热学[M]. 北京: 中国电力出版社, 2015: 38-39.
LIU Yanfeng, GAO Zhengyang, LIANG Xiujun. Heat Transfer[M]. Beijing: China Power Press, 2015: 38-39.
[15] MISRA R, BANSALl V, AGRAWAL G D, et al. Transient analysis based determination of derating factor for earth air tunnel heat exchanger in winter[J]. Energy & Buildings, 2013,58(2):76-85.
[16] DIXIT A, MISRA R K, MALI H S. Finite element compression modelling of 2×2 twill woven fabric textile composite[J]. Procedia Materials Science, 2014,6:1143-1149.
[17] 张文欢, 钱晓明, 师云龙, 等. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018,139(7):111-115.
ZHANG Wenhuan, QIAN Xiaoming, SHI Yunlong, et al. Relationship between static and dynamic thermal insulation of local or whole body and its model[J]. Journal of Textile Research, 2018,139(7):111-115.
[18] 谢光银. 机织物设计基础学[M]. 上海: 东华大学出版社, 2010: 21-23.
XIE Guangyin. Design Foundation of Woven Fabric[M]. Shanghai: Donghua University Press, 2010: 21-23.
[19] 秦强, 任青梅, 王琦, 等. 气动压力对柔性热防护结构隔热性能的影响[J]. 宇航材料工艺, 2010,40(5):81-83.
QIN Qiang, REN Qingmei, WANG Qi, et al. Analysis of influence of aerodynamic pressure on properties of flexible thermal protection structure insulation[J]. Aerospace Materials & Technology, 2010,40(5):81-83.
[1] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[2] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
[3] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144.
[4] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[5] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[6] 曹海建 陈红霞 黄晓梅. 玻璃纤维/ 环氧树脂基夹芯材料侧压性能数值模拟 [J]. 纺织学报, 2019, 40(05): 59-63.
[7] 郭臻 李新荣 卜兆宁 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟 [J]. 纺织学报, 2019, 40(05): 131-135.
[8] 广少博 金玉珍 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[9] 刘倩楠 张涵 刘新金 苏旭中. 基于ABAQUS 的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[10] 尚珊珊 郁崇文 杨建平 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[11] 史倩倩 高备 林惠婷 张玉泽 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[12] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173-180.
[13] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
[14] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
[15] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!