纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 7-13.doi: 10.13475/j.fzxb.20180706107

• 纤维材料 •    下一篇

锡/碳纳米纤维锂电负极材料形貌结构再造及其机制

赵金洋, 孙窈, 张鑫, 张悦悦, 赵浩阅, 夏鑫()   

  1. 新疆大学 纺织与服装学院, 新疆 乌鲁木齐 830046
  • 收稿日期:2018-07-24 修回日期:2019-04-26 出版日期:2019-08-15 发布日期:2019-08-16
  • 通讯作者: 夏鑫
  • 作者简介:赵金洋(1996—),男。主要研究方向为静电纺丝及其应用。
  • 基金资助:
    国家自然科学基金项目(51763022);新疆特色纺织材料开发及应用研究创新团队项目(201705151);大学生创新项目(201710755007);新疆大学四期教改项目(XJU2015JGY36)

Morphology and structure reconstruction and mechanism of Sn/C nanofibers anode for lithium battery

ZHAO Jinyang, SUN Yao, ZHANG Xin, ZHANG Yueyue, ZHAO Haoyue, XIA Xin()   

  1. College of Textiles and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
  • Received:2018-07-24 Revised:2019-04-26 Online:2019-08-15 Published:2019-08-16
  • Contact: XIA Xin

摘要:

为改善锡/碳(Sn/C)纳米纤维形貌结构并使其获得优异的锂电性能,采用醋酸锡为前驱体,聚丙烯腈为碳源,通过静电纺丝技术制备了Sn/C前驱体纳米纤维,并通过不同顺序的炭化工艺和深冷处理工艺对Sn/C前驱体纳米纤维进行形貌再造,制备了具有多孔结构与皮芯结构的Sn/C纳米纤维,最后通过形貌表征、比表面积以及晶型结构测试了纳米纤维的结构和性能。结果表明:Sn/C纳米纤维的多孔和特殊形貌的碳包覆结构,有效防止了Sn颗粒的团聚,缓解了充放电时电极材料的体积膨胀,同时减少了容量损失,增强了电极材料的导电性和结构稳定性;经过先深冷处理再炭化处理,具有多孔结构的Sn/C纳米纤维表现出最稳定的电化学性能,循环100圈后的质量比容量保持率高达93.9%。

关键词: 锡/碳纳米纤维, 深冷处理, 炭化处理, 多孔结构, 皮芯结构, 电化学性能

Abstract:

In order to improve the morphology and structure of Sn/C nanofibers and obtain excellent lithium electrical properties, Sn/C precursor nanofibers were prepared from polyacrylonitrile as the carbon source and Sn(CH3COO)2 as the precursor by electrospinning. Sn/C nanofibers with a porous and skin-core structure were prepared by different sequences of carbonization and a cryogenic treatment process. By means of morphology characterization, specific surface area analysis and crystal structure analysis, the structure and properties of the nanofibers were tested. The results show that the porous and the special carbon coated structure effectively prevents the agglomeration of the Sn particles, relieves the volume expansion to reduce the capacity loss, and increases the conductivity and the structural stability of the material. The Sn/C nanofibers with a porous structure obtained by cryogenic treatment before carbonization exhibit the most stable electrochemical performance, and the specific capacity retention after 100 cycles is as high as 93.9%.

Key words: Sn/C nanofiber, cryogenic treatment, carbonization, porous structure, skin-core structure, electrochemical property

中图分类号: 

  • TS195

图1

深冷箱控温曲线图"

图2

Sn/C前驱体纳米纤维深冷处理前后扫描电镜照片"

图3

不同处理条件获得的Sn/C纳米纤维的形貌照片"

图4

不同处理条件获得的Sn/C纳米纤维的氮气吸附/脱附曲线及孔径分布图"

图5

不同处理条件获得的Sn/C纳米纤维的XRD图谱"

图6

不同处理条件的Sn/C纳米纤维的恒流充放电曲线和容量微分曲线"

图7

不同处理条件获得Sn/C纳米纤维的循环性能曲线"

[1] MARCINEK M, HARDWICK L, RICHARDSON T , et al. Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries[J]. Journal of Power Sources, 2007,173(2):65-71.
[2] 段博超, 王维坤, 赵海雷 , 等. 锂离子电池锡基负极材料研究进展[J]. 稀有金属材料与工程, 2012,41(S2):93-100.
DUAN Bochao, WANG Weikun, ZHAO Hailei , et al. Research progress on tin-based cathode materials for lithium-ion batteries[J]. Rare Metal Materials and Engineering, 2012,41(S2):93-100.
[3] 刘红梅, 王建军, 李欢欢 , 等. 深冷处理对聚合物材料改性研究综述[J]. 塑料工业, 2017,45(6):1-4.
LIU Hongmei, WANG Jianjun, LI Huanhuan , et al. Research review on the modification of polymer materials by cryogenic treatment[J]. Plastics Industry, 2017,45(6):1-4.
[4] 叶茂, 姜枫, 刘杰 . 高强度铝合金深冷处理技术的研究与应用[J]. 基础研究, 2018(6):104-108.
YE Mao, JIANG Feng, LIU Jie . Research and application of deep cooling treatment technology for high-strength aluminum alloys[J]. Basic Research, 2018(6):104-108.
[5] 靳鹏飞, 吴志生, 王维新 , 等. 深冷处理在金属材料中的应用及研究进展[J]. 铝加工, 2010(3):16-19.
JIN Pengfei, WU Zhisheng, WANG Weixin , et al. Application and research progress of cryogenic treatment in metal materials[J]. Aluminum Processing, 2010(3):16-19.
[6] 崔晓明 . 深冷处理对非晶合金力学性能的影响[D]. 太原:太原科技大学, 2014: 11-18.
CUI Xiaoming . Effects of deep cooling treatment on mechanical properties of amorphous alloys[D]. Taiyuan: Taiyuan University of Science and Technology, 2014: 11-18.
[7] XIA X, LI Z, ZHOU H , et al. The effect of deep cryogenic treatment on SnSb/C nanofibers anodes for Li-ion battery[J]. Electrochimica Acta, 2016,222:765-772.
[8] 夏鑫, 陈玲, 李智勇 , 等. 深冷处理对锡锑/碳纳米纤维的形貌再造及其机制[J]. 纺织学报, 2017,38(3):23-27.
XIA Xin, CHEN Ling, LI Zhiyong , et al. Morphology and mechanism of deep cooling treatment for SnSb/C nanofibers[J]. Journal of Textile Research, 2017,38(3):23-27.
[9] 冯寸寸 . 突出煤孔隙特征的实验研究[D]. 阜新:辽宁工程技术大学, 2013: 10-31.
FENG Cuncun . Experimental study on pore characteristics of outburst coal[D]. Fuxin: Liaoning Project Technology University, 2013: 10-31.
[10] 张哲泠, 杨正红 . 微介孔材料物理吸附准确性分析的理论与实践[J]. 催化学报, 2013,34(10):1797-1810.
ZHANG Zheling, YANG Zhenghong . Theory and practice of accuracy analysis of physical adsorption of micromesoporous materials[J]. Journal of Catalysis, 2013,34(10):1797-1810.
[11] 周闻达, 王莹, 鲍征宇 , 等. 等温吸附法在页岩孔隙结构测试中的应用[J]. 科技通报, 2015,31(1):12-18.
ZHOU Wenda, WANG Ying, BAO Zhengyu , et al. The application of isotherm adsorption in measuring the shale pore structure[J]. Bulletin of Science and Technology, 2015,31(1):12-18.
[12] 周勋 . 颗粒、短纤维 Al2O3 双相陶瓷/铸造铝合金复合材料研究[D]. 西安:西安理工大学, 2006: 5-15.
ZHOU Xun . Study on Al2O3 two-phase ceramic/casting aluminum alloy composites with granule and short fiber[D]. Xi'an: Xi'an University of Technology, 2006: 5-15.
[13] GORIPARTI S, MIELE E, ANGELIS F D , et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014,257(3):421-443.
[14] XIAO L, CAO Y, XIAO J , et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications[J]. Chem Communication, 2012,48(27):3321-3323.
[15] LOU X W, CHEN J S, CHEN P , et al. One-pot synjournal of carbon coated SnO2 nanocolloids with improved reversible lithium storage properties[J]. Chemistry of Materials, 2009,21(13):68-74.
[16] 王文超 . 锂离子电池锡基负极材料的制备和结构与性能研究[D]. 上海:复旦大学, 2013: 15-30.
WANG Wenchao . Preparation, structure and properties of tin-based anode materials forlithium-ion batteries[D]. Shanghai: Fudan University, 2013: 15-30.
[1] 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/ 石墨烯/ 棉织物复合电极的制及其电化学性能 [J]. 纺织学报, 2020, 41(01): 96-101.
[2] 刘慧洁, 夏鑫. 深冷处理温度对锡锑/碳纳米纤维负极材料锂电性能的影响[J]. 纺织学报, 2019, 40(04): 38-43.
[3] 田银彩 张浩鹏 李博琛 康广杰 李根宇. 静电纺聚丙烯腈/石墨烯碳纳米纤维的结构与性能[J]. 纺织学报, 2018, 39(10): 24-31.
[4] 陈洪立 焦晓宁 柯鹏. 取向增强复合锂离子电池隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 8-14.
[5] 刘呈坤 贺海军 孙润军 李博昱 于群. 静电纺制备多孔纳米纤维材料的研究进展[J]. 纺织学报, 2017, 38(03): 168-173.
[6] 夏鑫 陈玲 李智勇 邱夷平. 深冷处理对锡锑/碳纳米纤维的形貌再造及其机制[J]. 纺织学报, 2017, 38(03): 23-27.
[7] 周锦涛 焦晓宁 于宾. 复合锂离子电池隔膜的制备及其电化学性能[J]. 纺织学报, 2017, 38(01): 23-28.
[8] 夏鑫 李群华 周惠敏 魏取福 张向武. 皮芯结构Sn∕C包覆碳杂化纳米纤维的制备及其在锂离子负极材料中的应用[J]. 纺织学报, 2014, 35(8): 1-0.
[9] 高大伟 王丽丽 魏取福 王春霞 刘国亮. 碳基复合纳米纤维的制备与表征及其电容性[J]. 纺织学报, 2014, 35(1): 20-0.
[10] 曾凡龙 刘占莲 韩芹 曹谦芝 仲林 肖婷婷. 活性炭纤维/NiO/MnO2复合电极的结构及其电化学性能[J]. 纺织学报, 2013, 34(10): 1-0.
[11] 姜岩;王业宏;姜丽;张大庆;王善元. 长丝变形纱的皮芯结构及其参数[J]. 纺织学报, 2009, 30(08): 30-33.
[12] 胡锋;王发明;郑智毓;陆明;周小红. 微多孔聚酯短纤维织物的制备与性能[J]. 纺织学报, 2008, 29(3): 17-20.
[13] 张建春;施楣梧;朱华;来侃. Lyocell纤维皮芯结构的研究[J]. 纺织学报, 2000, 21(01): 7-10.
[14] 王华平;余晓蔚;韩淑丽. 熔纺中空纤维皮芯结构的动力学模拟──冷却条件对皮芯差异的影响[J]. 纺织学报, 1999, 20(03): 15-18.
[15] 王华平;余晓蔚;韩淑丽. 熔纺中空纤维皮芯结构的动力学模拟──泵供量、卷绕速度、熔体温度、切片粘度的影响[J]. 纺织学报, 1999, 20(02): 7-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邢明杰;唐佃花;郁崇文. 工艺参数对喷气纱强力的影响[J]. 纺织学报, 2005, 26(1): 49 -51 .
[2] 檀革银;靳向煜;唐守星. 非织造用转基因棉的脱脂工艺及性能研究[J]. 纺织学报, 2004, 25(04): 24 -25 .
[3] 杨菊萍. 高浓度交联型阳离子高分子絮凝剂[J]. 纺织学报, 2005, 26(5): 63 -64 .
[4] 祝志峰;乔志勇. 浆液泡沫的起因与消除[J]. 纺织学报, 2006, 27(7): 86 -89 .
[5] 林建龙;王小北;顾翔. 新型电脑刺绣机挑线机构设计分析[J]. 纺织学报, 2006, 27(12): 105 -108 .
[6] 张强;王悌义. 赫马(Hema)型喷嘴流场测定与分析[J]. 纺织学报, 1995, 16(02): 19 -22 .
[7] 张佩华;潘伯荣;汤振民;邱佩芬. 偏心拉杆式牵拉机构的测试与分析[J]. 纺织学报, 1995, 16(02): 46 -48 .
[8] 李济群. 国产毛 C07型自调匀整装置延迟时间的简约计算式[J]. 纺织学报, 1993, 14(03): 19 -21 .
[9] . 国际化工及石油化工设备展览四月份在京举办[J]. 纺织学报, 1987, 8(02): 55 .
[10] 杨明远;李立风;李繁亭;钱宝钧. 丙烯腈-丝朊接枝共聚纤维中的相分离与互相渗透的网络结构[J]. 纺织学报, 1986, 7(06): 11 -16 .