纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 125-130.doi: 10.13475/j.fzxb.20180707306

• 染整与化学品 • 上一篇    下一篇

氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性

苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳()   

  1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
  • 收稿日期:2018-07-26 修回日期:2019-06-28 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 魏春艳
  • 作者简介:苗苗(1993—),女,硕士生。主要研究方向为功能材料。

Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric

MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan()   

  1. College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2018-07-26 Revised:2019-06-28 Online:2019-11-15 Published:2019-11-26
  • Contact: WEI Chunyan

摘要:

为改善聚丙烯非织造布的抗静电性,以氧化石墨烯为接枝单体,冰醋酸为催化剂,通过响应面分析法优化聚丙烯非织造布接枝氧化石墨烯工艺参数。探讨了氧化石墨烯质量浓度、催化剂浓度和接枝温度对接枝率的影响,借助织物摩擦式静电测试仪、表面张力测试仪、扫描电子显微镜、傅里叶变换红外光谱仪对非织造布进行测试和表征。获得聚丙烯非织造布接枝氧化石墨烯最优工艺参数:氧化石墨烯质量浓度为17.06 g/L,冰醋酸浓度为0.031 mol/L,温度为70.60 ℃,在此条件下测得,接枝率为22.3%。结果表明:接枝后聚丙烯非织造布的摩擦带电电压为1 094 V,接触角为76.9°;接枝后的非织造布较原布粗糙,并且明显附着一层物质;接枝后的非织造布在1 621、1 385、1 117 cm-1处出现了新的峰,证明氧化石墨烯的存在。

关键词: 响应面分析法, 氧化石墨烯, 聚丙烯非织造布, 接触角, 抗静电性

Abstract:

In order to improve the antistatic property of polypropylene nonwoven fabric, the process parameters of grafting graphene oxide on polypropylene nonwoven fabric were optimized by response surface methodology with graphene oxide as grafting monomer and glacial acetic acid as catalyst. The influences of graphene oxide concentration, catalyst concentration and grafting temperature on the grafting rate were investigated. Fabric friction electrostatic tester, surface tension tester, scanning electron microscope and Fourier transform infrared spectroscopy were adopted to test and characterize the nonwoven fabric. The optimal process parameters are: graphene oxide concentration of 17.06 g/L, glacial acetic acid concentration of 0.031 mol/L and temperature of 70.60 ℃, at this time the graft ratio is 22.3%. The results show that the friction voltage of polypropylene nonwoven fabric after grafting is 1 094 V, and compared with the original fabric, the contact angle of polypropylene nonwoven fabric after grafting is 76.9°. The grafted nonwoven fabric is rougher than the original fabric and obviously adhered with a layer of material; and the grafted nonwoven fabric shows new peaks at 1 621, 1 385 and 1 117 cm-1, proving the existence of graphene oxide.

Key words: response surface analysis, graphene oxide, polypropylene nonwoven fabric, contact angle, antistatic property

中图分类号: 

  • TS174.3

表1

聚丙烯接枝氧化石墨烯试验因素水平编码表"

因素 编码
记号
基准
水平(0)
变化
间距
上水平
(+1)
下水平
(-1)
A X1 17 1 18 16
B X2 0.03 0.01 0.04 0.02
C X3 70 20 90 50

表2

聚丙烯接枝氧化石墨烯实验设计方案和结果"

实验序号 X1 X2 X3 接枝率Y/%
1 0 0 0 22.35
2 1 -1 0 19.53
3 1 1 0 20.67
4 -1 1 0 18.24
5 0 0 0 21.78
6 -1 -1 0 16.14
7 0 0 0 22.59
8 1 0 -1 18.45
9 -1 0 -1 17.32
10 0 -1 1 16.98
11 0 1 -1 18.24
12 0 0 0 22.30
13 -1 0 1 17.63
14 1 0 1 19.32
15 0 0 0 22.03
16 0 -1 -1 15.39
17 0 1 1 18.60

表3

聚丙烯接枝氧化石墨烯方差分析"

来源 平方和 自由度 均值 F P
模型 83.690 9 9.300 36.62 <0.000 1
X1 9.330 1 9.330 36.74 0.000 5
X2 7.430 1 7.430 29.26 0.001 0
X3 1.220 1 1.220 4.82 0.064 1
X1X2 0.230 1 0.230 0.91 0.372 6
X1X3 0.078 1 0.078 0.31 0.595 8
X2X3 0.380 1 0.380 1.49 0.261 8
X12 7.60 1 7.600 29.94 0.000 9
X22 20.770 1 20.770 81.81 <0.000 1
X32 30.380 1 30.380 119.64 <0.000 1
残差 1.780 7 0.250
失拟项 1.390 3 0.460 4.75 0.083 1
误差 0.390 4 0.097
总和 85.470 16
判定系数 0.979 2
修正判定系数 0.952 5

图1

氧化石墨烯和催化剂的等高线图和响应曲面图"

图2

氧化石墨烯和接枝温度的等高线图和响应曲面图"

图3

催化剂和接枝温度的等高线图和响应曲面图"

图4

氧化石墨烯质量浓度对接枝率的影响"

图5

催化剂浓度对接枝率的影响"

图6

温度对接枝率的影响"

图7

接枝GO前后PP非织造布的SEM照片(×1 000)"

图8

原PP非织造布和PP-g-GO非织造布红外谱图"

[1] TSOU C H, YAO W H, HUNG W S, et al. Innovative plasma process of grafting methyl diallyl ammonium salt onto polypropylene to impart antibacterial and hydrophilic surface properties[J]. Industrial & Engineering Chemistry Research, 2018,57(7):2537-2545.
[2] 许永杉, 吴敏, 葛明桥. 壳聚糖接枝聚合物的制备及其在聚丙烯非织造布上的应用[J]. 纺织学报, 2015,36(9):70-74.
XU Yongbin, WU Min, GE Mingqiao. Graft of chitosan and its application in polypropylene non-woven fabric[J]. Journal of Textile Research, 2015,36(9):70-74.
[3] LEE T W, JEONG Y G. Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes[J]. Composites Science & Technology, 2014,103:78-84.
[4] LUO W, ZHANG B, ZOU H, et al. Enhanced interfacial adhesion between polypropylene and carbon fiber by graphene oxide/polyethyleneimine coating[J]. Journal of Industrial & Engineering Chemistry, 2017,51:1-10.
[5] BALART J, FOMBUENA V, BORONAT T, et al. Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability[J]. Journal of Materials Science, 2012,47(5):2375-2383.
[6] CHUNG T C, LEE S H. New hydrophilic polypropylene membranes: fabrication and evaluation[J]. Journal of Applied Polymer Science, 2015,64(3):567-575.
[7] WANG C C, YANG F L, LIU L F, et al. Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes[J]. Journal of Membrane Science, 2009,345(1):223-232.
[8] YANG Y F, LI Y, LI Q L, et al. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling[J]. Journal of Membrane Science, 2010,362(1):255-264.
doi: 10.1016/j.memsci.2010.06.048
[9] 苗苗, 许多, 鹿娜, 等. 氧化石墨烯对丙纶非织造布抗静电改性研究[J]. 产业用纺织品, 2017(11):39-43.
MIAO Miao, XU Duo, LU Na, et al. Study on antistatic modification of polypropylene non-woven fabric by using graphene oxide[J]. Technical Textiles, 2017(11):39-43.
[10] 李韩博, 杨明顺, 李言, 等. 响应曲面法在SPIF表面粗糙度预测及多目标优化中的应用[J]. 机械科学与技术, 2017,36(12):1896-1905.
LI Hanbo, YANG Mingshun, LI Yan, et al. Application of response surface methodology in SPF surface roughness prediction and multi-objective optimization[J]. Mechanical Science and Technology, 2017,36(12):1896-1905.
[11] 魏俊富, 王菲菲, 周翔宇, 等. 紫外辐照法制备羧基化PP非织造布及其对壬基酚聚氧乙烯醚的吸附[J]. 天津工业大学学报, 2017,36(6):28-32.
WEI Junfu, WANG Feifei, ZHOU Xiangyu, et al. Preparation of carboxylated PP nonwovens by UV irradiation and their adsorption of nonylphenol polyoxyethylene ether[J]. Journal of Tianjin Polytechnic University, 2017,36(6):28-32.
[12] XIN Z, YAN S, DING J, et al. Surface modification of polypropylene nonwoven fabrics via covalent immobilization of nonionic sugar-based surfactants[J]. Applied Surface Science, 2014,300(3):8-15.
[13] 肖东升, 郑玉婴, 欧忠星. 功能化石墨烯/聚乙烯复合材料薄膜的制备及表征[J]. 功能材料, 2017,48(2):2221-2225.
XIAO Dongsheng, ZHENG Yuying, OU Zhongxing. Preparation and characterization of functionalized graphene/polyethylene composite films[J]. Functional Materials, 2017,48(2):2221-2225.
[1] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[2] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[3] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[4] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[5] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[6] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[7] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[8] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[9] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[10] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[11] 高晶, 张俊, 赵泽阳, 李婉迪, 王佳珺, 王璐. 氧化石墨烯协同TiO2 / SiO2改性涤/ 棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126.
[12] 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控 [J]. 纺织学报, 2019, 40(09): 114-121.
[13] 高晶, 王璐. 前处理工艺对毛/ 涤织物疏水改性效果的影响 [J]. 纺织学报, 2019, 40(09): 91-96.
[14] 邹梨花 徐珍珍 孙妍妍 王太冉 邱夷平 . 氧化石墨烯/ 聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-123.
[15] 凡力华 宋伟华 王潮霞. 紫外光还原氧化石墨烯腈纶织物抗静电性能 [J]. 纺织学报, 2019, 40(05): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!