纺织学报 ›› 2019, Vol. 40 ›› Issue (07): 71-77.doi: 10.13475/j.fzxb.20180707607

• 纺织工程 • 上一篇    下一篇

碳纤维增强编织复合材料圆管制备及其压缩性能

谷元慧1, 张典堂1,2(), 贾明皓1, 钱坤1   

  1. 1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    2. 安徽省高等学校纺织面料重点实验室, 安徽 芜湖 241000;
  • 收稿日期:2018-07-27 修回日期:2019-03-06 出版日期:2019-07-15 发布日期:2019-07-25
  • 通讯作者: 张典堂
  • 作者简介:谷元慧(1993-),女,硕士生。主要研究方向为碳纤维增强编织复合材料。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303200);国家自然科学基金项目(11702115);江苏省自然科学基金项目(BK20170166);江苏省研究生科研与实践创新计划项目(SJCX18_0626);安徽省纺织工程技术研究中心联合开放基金项目(2018AKLTF04)

Preparation and compressive properties of carbon fiber reinforced braided composite circular tubes

GU Yuanhui1, ZHANG Diantang1,2(), JIA Minghao1, QIAN Kun1   

  1. 1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Anhui Province College Key Laboratory of Textile Fabrics, Wuhu, Anhui 241000, China;
  • Received:2018-07-27 Revised:2019-03-06 Online:2019-07-15 Published:2019-07-25
  • Contact: ZHANG Diantang

摘要:

为进一步探究编织结构与长度对复合材料圆管压缩性能的影响,采用树脂传递模塑成型工艺复合二维编织铺层与三维四向编织圆管,通过轴向准静态压缩试验获取了4种复合材料圆管试样的压缩力学行为。结合高速摄影记录,分析了编织复合材料圆管的破坏过程及失效模式,探索其压缩失效机制。结果显示:试样均表现出弹塑性特征,但三维编织圆管呈现出更好的压缩承载特性,其压缩模量与载荷峰值分别达到5.91 GPa与14.23 kN;试样呈现出纤维断裂、基体开裂脱黏、瓣状破坏、剪切以及挤压屈曲等破坏模式中的几种或全部的组合;二维编织复合材料圆管的渐进失效特征更为明显,具有较好的吸能特性,且其压缩模量随管件长度的增加而有所提升,但是吸能效果与试样长度呈非线性关系。

关键词: 树脂传递模塑成型, 编织复合材料, 压缩试验, 破坏模式, 吸能特性

Abstract:

In order to further explore the influence of braid structure and length on the compression performance of composite circular tubes, two-dimensional over-braiding and three-dimensional four-directional braided circular tubes were manufactured by a resin transfer molding process. The compression mechanical behavior of four composite tube samples were obtained by quasi-static axial compression test. Combined with high-speed photographic recording, the failure process and failure mode of braided composite tubes were analyzed, and the compression failure mechanism was explored. The results show that the two braided structure tubes show elastoplastic characteristics, while the 3-D braided tube shows better compression bearing capacity, and has the compressive modulus and load peaks of 5.91 GPa and 14.23 kN, respectively. The samples exhibit several or all combinations of failure modes such as fiber breakage, matrix cracking, debonding, petal destruction, shearing and extrusion buckling. The progressive failure characteristics of the two-dimensional braided composite tubes are more obvious, and have better energy absorption characteristics. The compression modulus of the two-dimensional braided composite circular tubes increases with the length of the composite circular tubes, but the energy absorption effect is nonlinear with the length of the sample.

Key words: resin transfer molding, braided composite, compression test, destruction mode, energy absorption characteristic

中图分类号: 

  • TB332

表1

碳纤维编织圆管试样规格参数"

试样
名称
纤维束
种类与型号
长度/
mm
编织角/
(°)
纤维体积
分数/%
3D-40 T700-6K 40 40 50
OB-40 T700-12K 40 53 53
OB-50 T700-12K 50 52 54
OB-60 T700-12K 60 53 53

图1

轴向压缩试验件"

图2

4种试样压缩应力与应变曲线"

图3

3D-40与OB-40压缩载荷与位移曲线"

图4

3D-40和OB-40的压缩损伤裂纹扩展高速摄影图片"

图5

3D-40压缩最终破坏形态"

图6

OB-40压缩最终破坏形态"

图7

OB-50压缩最终破坏形态"

图8

OB-60压缩最终破坏形态"

表2

试样的能量吸收参数"

试样
名称
Pmax/
kN
Pmean/
kN
SEA/
(kJ·kg-1)
LR
3D-40 14.23 94.55 68.70 1.50
OB-40 12.01 81.44 58.49 1.47
OB-50 12.02 100.02 71.57 1.20
OB-60 12.43 96.50 69.31 1.29
[1] LIU Zhenguo . Study on comparison of manufacturing methods of high performance composites pipes and application of 3D braiding technology[J]. Journal of Materials Engineering, 2009(2):109-113.
[2] ZHOU H L, HU D M, ZHANG W , et al. The transverse impact responses of 3-D braided composite I-beam[J]. Composites: Part A, 2017(94):158-169.
[3] 孙志宏, 陈阳, 周申华 . 圆织三维管状碳纤维复合材料弹性性能预测[J]. 纺织学报, 2014,35(9):56-61.
SUN Zhihong, CHEN Yang, ZHOU Shenhua . Prediction of elasticity of circular woven 3-D tubular carbon fiber composites[J]. Journal of Textile Research, 2014,35(9):56-61.
[4] ZENG T, FANG D N, LU T J . Dynamic crashing and impact energy absorption of 3D braided composite tubes[J]. Materials Letters, 2005,59(12):1491-1496.
[5] MCGREGOR C, VAZIRI R, POURSARTIP A , et al. Axial crushing of triaxially braided composite tubes at quasi-static and dynamic rates[J]. Composite Structures, 2016(157):197-206.
[6] SHANKHACHUR Roy S, POTLURI P, SOUTIS C . Tensile response of hoop reinforced multiaxially braided thin wall composite tubes[J]. Applied Composite Materials, 2017,24(2):397-416.
[7] 黄建城 . 含薄弱环节复合材料圆管轴向吸能特性研究[D]. 南京:南京航空航天大学, 2011: 69-76.
HUANG Jiancheng . On the axial energy absorption behaviour of composite tubes with crush triggers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 69-76.
[8] GIDEON Rotich K, SUN B Z, GU B H . Mechanical behaviors of four-step 1×1 braided carbon/epoxy three-dimensional composite tubes under axial compression loading[J]. Polymer Composites, 2016,37(11):3210-3218.
[9] GIDEON Rotich K, ZH H L, LI Y Y , et al. Quasi-static compression and compression-compression fatigue characteristics of 3D braided carbon/epoxy tube[J]. Journal of The Textile Institute, 2016,107(7):938-948.
[10] EYER G, MONTAGNIER O, CHARLES J P , et al. Design of a composite tube to analyze the compressive behavior of CFRP[J]. Composites: Part A, 2016,87:115-122.
[11] WU X Y, ZHANG Q, ZHANG W , et al. Axial compressive deformation and damage of four-step 3-D circular braided composite tubes under various strain rates[J]. Journal of The Textile Institute, 2016(1):1-17.
[12] WU X Y, ZHANG Q, GU B H , et al. Influence of temperature and strain rate on the longitudinal compressive crashworthiness of 3D braided composite tubes and finite element analysis[J]. International Journal of Damage Mechanics, 2017,26(7):1003-1027.
[13] 邢丽英, 蒋诗才, 周正刚 . 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013,30(2):1-9.
XING Liying, JIANG Shicai, ZHOU Zhenggang . Progress of manufacturing technology developed of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013,30(2):1-9.
[14] MAGAGNATO D, SEUFFERT J, BERNATH A , et al. Experimental and numerical study of the influence of integrated load transmission elements on filling behavior in resin transfer molding[J]. Composite Structures, 2018(5):198.
[15] 景新荣, 刘向丽, 苏霞 . RTM成型工艺技术应用及加工工艺性研究浅析[J]. 橡塑技术与装备, 2015,41(24):132-135.
JING Xinrong, LIU Xiangli, SU Xia . Application and processing technology research of RTM molding process[J]. China Rubber/Plastics Technology and Equipment, 2015,41(24):132-135.
[16] 许晶, 马岩, 阳玉球 . 方形截面玻璃纤维编织复合材料管件物的能量吸收特征[J]. 玻璃钢/复合材料, 2016(1):51-57.
XU Jing, MA Yan, YANG Yuqiu . Energy absorption capability of braided glass fiber reinforced composite tubes with rectangular cross-section[J]. Fiber Reinforced Plastics/Composites, 2016(1):51-57.
[17] 马岩, 阳玉球 . 圆-方异形截面复合材料管件物能量吸收机制[J]. 复合材料学报, 2015,32(1):243-249.
MA Yan, YANG Yuqiu . Energy absorption mechanism of circular-square irregular section composite tubes[J]. Acta Materiae Compositae Sinica, 2015,32(1):243-249.
[1] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[2] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[3] 刘军, 刘奎, 宁博, 孙宝忠, 张威. 三维编织复合材料T 型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12): 57-62.
[4] 张国利, 张策, 史晓平, 王志鹏, 姜茜. 复合材料树脂传递模塑注胶工艺调控方法与技术[J]. 纺织学报, 2019, 40(12): 178-184.
[5] 张燕南 周伟 商雅静 赵文政 . 三维编织复合材料拉伸微变形的测量与损伤破坏声发射监测[J]. 纺织学报, 2019, 40(08): 55-63.
[6] 曹海建 陈红霞 黄晓梅. 玻璃纤维/ 环氧树脂基夹芯材料侧压性能数值模拟 [J]. 纺织学报, 2019, 40(05): 59-63.
[7] 万莉 贡丽英 贾敏瑞. 基于主成分分析的智能复合材料结构损伤类型识别[J]. 纺织学报, 2019, 40(05): 53-58.
[8] 万振凯 李鹏 贾敏瑞 贡丽英 张志钢. 大尺寸三维编织复合材料结构损伤指数特征[J]. 纺织学报, 2018, 39(09): 65-70.
[9] 贾树生 万振凯 杨连贺 张恒杰. 碳纳米线的拉伸应变传感特性[J]. 纺织学报, 2018, 39(03): 14-18.
[10] 贾树生 杨连贺 白会肖 万振凯 . 嵌入三维编织复合材料的碳纳米线应变传感特性[J]. 纺织学报, 2018, 39(01): 11-18.
[11] 吕丽华 黄耀丽 崔婧蕊. 蜂窝状三维整体机织复合材料的弯曲性能及其有限元模拟[J]. 纺织学报, 2017, 38(11): 56-60.
[12] 万振凯 张志刚 贾敏瑞 包玮琛 董卿霞. 基于碳纳米线传感器的三维六向编织复合材料内部损伤定位[J]. 纺织学报, 2017, 38(08): 68-74.
[13] 万振凯 贡丽英 万莉. 基于损伤指数的三维编织复合材料结构损伤评估[J]. 纺织学报, 2017, 38(05): 69-74.
[14] 万莉 郭建民 马永军. 三维编织复合材料弯曲承载下嵌入碳纳米线的特性分析[J]. 纺织学报, 2016, 37(01): 57-63.
[15] 曹海建 冯古雨 俞科静 钱坤. 碳纤维/环氧树脂基中空夹芯复合材料压缩性能的有限元法研究[J]. 纺织学报, 2015, 36(09): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!