纺织学报 ›› 2019, Vol. 40 ›› Issue (07): 158-162.doi: 10.13475/j.fzxb.20180801305
LI Pengfei, YAN Kai, ZHANG Huanhuan(), JING Junfeng
摘要:
为能够更加精确地计算出纱线毛羽的根数及毛羽长度,基于最大熵与密度聚类相融合对纱线毛羽的长度及根数进行检测。该方法首先利用双边滤波对采集到的纱线图像进行预处理,滤除图像中的噪声,同时增强纱线毛羽特征;然后利用最大熵对预处理后的纱线图像进行阈值分割,去除条干提取毛羽,并对毛羽进行细化;最后利用密度聚类算法(DBSCAN聚类)对细化后的毛羽进行分类统计,根据所分类的个数以及每类所含像素点的个数计算出毛羽的根数及长度。将实验结果与目测法和基准线法进行比较,结果表明,该方法与目测方法检测的结果非常接近,结果比基准线法更加精确,检测结果准确、有效。
中图分类号:
[1] | 杨红英, 朱苏康 . 纱线毛羽[J]. 纺织学报, 2000,21(6):11-14. |
YANG Hongying, ZHU Sukang . Yarn hairiness[J]. Journal of Textile Research, 2000,21(6):11-14. | |
[2] | 肖国兰 . 浅析纱线毛羽的成因及预防措施[J]. 上海纺织科技, 2014,42(1):42-43,52. |
XIAO Guolan . Causes and pre-prevention measures of yarn hairiness[J]. Shanghai Textile Science & Technology, 2014,42(1):42-43,52. | |
[3] | JING J, HUANG M, LI P , et al. Automatic measurement of yarn hairiness based on the improved MRMRF segmentation algorithm[J]. Journal of The Textile Institute, 2018,109(6):740-749. |
[4] | 孙银银, 潘如如, 高卫东 . 基于数字图像处理的纱线毛羽检测[J]. 纺织学报, 2013,34(6):102-106. |
SUN Yinyin, PAN Ruru, GAO Weidong . Detection of yarn hairiness based on digital image processing[J]. Journal of Textile Research, 2013,34(6):102-106. | |
[5] | FABIJ$\acute{N}$ASKA A, JACKOWSKA-STRUMIŁŁO L . Image processing and analysis algorithms for yarn hairiness determination[J]. Machine Vision and Applications, 2012,23(3):527-540. |
[6] | 郭海涛, 田坦, 王连玉 , 等. 利用二维属性直方图的最大熵的图像分割方法[J]. 光学学报, 2006(4):506-509. |
GUO Haitao, TIAN Tan, WANG Lianyu , et al. Image segmentation method based on maximum entropy of two-dimensional attribute histogram[J]. Acta Optica Sinica, 2006(4):506-509. | |
[7] | 伦向敏, 侯一民 . 运用迭代最大熵算法选取最佳图像分割阈值[J]. 计算机工程与设计, 2015,36(5):1265-1268,1289. |
LUN Xiangmin, HOU Yimin . Using the iterative maximum entropy algorithm to select the optimal image segmentation threshold[J]. Computer Engineering and Design, 2015,36(5):1265-1268,1289. | |
[8] | HILDITCH C J . Comparison of thinning algorithms on a parallel processor[J]. Image and Vision Computing, 1983,1(3):115-132. |
[9] | 李宗林 . 基于DBSCAN的自适应聚类算法研究[D]. 长沙:长沙理工大学, 2015: 14-23. |
LI Zonglin . Research on adaptive clustering algorithm based on DBSCAN[D]. Changsha: Changsha University of Science and Technology, 2015: 14-23. | |
[10] | 周培培, 丁庆海, 罗海波 , 等. 基于DBSCAN聚类算法的异常轨迹检测[J]. 红外与激光工程, 2017,46(5):238-245. |
ZHOU Peipei, DING Qinghai, LUO Haibo , et al. Abnormal trajectory detection based on DBSCAN clustering algorithm[J]. Infrared and Laser Engineering, 2017,46(5):238-245. | |
[11] | 孙银银, 张宁, 吴洋 , 等. 纱线毛羽骨架及长度的跟踪测量[J]. 纺织学报, 2017,38(8):32-38. |
SUN Yinyin, ZHANG Ning, WU Yang , et al. Tracking measurement of yarn hairiness skeleton and length[J]. Journal of Textile Research, 2017,38(8):32-38. | |
[12] | 苏继伟 . 简论纱线毛羽的测试方法[J]. 上海纺织科技, 2004,32(6):60-62. |
SU Jiwei . A brief discussion on test method of yarn hairiness[J]. Shanghai Textile Science Technology, 2004,32(6):60-62. | |
[13] | 张继蕾 . 基于图像处理技术的纱线毛羽检测应用研究[D]. 石家庄:河北科技大学, 2011: 2. |
ZHANG Jilei . Research on yarn hairiness detection based on image processing technology[D]. Shijiazhuang: Hebei University of Science and Technology, 2011: 2. |
[1] | 王文帝 辛斌杰 邓娜 李佳平 刘宁娟. 单一视角下自适应阈值法的纱线毛羽识别及其应用[J]. 纺织学报, 2019, 40(05): 150-156. |
[2] | 景军锋 张星星. 基于机器视觉的玻璃纤维管纱毛羽检测[J]. 纺织学报, 2019, 40(05): 157-162. |
[3] | 孙银银 张宁 吴洋 潘如如 高卫东. 纱线毛羽骨架及长度的跟踪测量[J]. 纺织学报, 2017, 38(08): 32-38. |
[4] | 于学智 曹继鹏 孙鹏子. 梳棉机盖板踵趾差对纱线毛羽的影响[J]. 纺织学报, 2013, 34(7): 35-39. |
[5] | 牟俊玲;邱华;葛明桥. 旋流器对环锭纺纱线性能的影响[J]. 纺织学报, 2009, 30(11): 43-47. |
[6] | 褚结;葛明桥. 旋流器降低环锭纺纱线毛羽的研究[J]. 纺织学报, 2007, 28(12): 34-37. |
[7] | 钱友三;程隆棣;薛文良. 络筒上蜡装置设计原理与分析[J]. 纺织学报, 2007, 28(1): 102-104. |
[8] | 黄立新;崔毅华. 高涤T/C细密织物的纱线上浆与毛羽控制[J]. 纺织学报, 2002, 23(03): 58-59. |
[9] | 杨红英;朱苏康. 纱线毛羽[J]. 纺织学报, 2000, 21(06): 11-14. |
[10] | 高卫东;王鸿博. 纱线毛羽危害程度的探讨[J]. 纺织学报, 1998, 19(06): 19-20. |
|