纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 1-6.doi: 10.13475/j.fzxb.20180803306

• 纤维材料 •    下一篇

聚偏氟乙烯光致热纳米纤维膜的制备及其性能

高尚鹏1,2, 黄庆林1,2(), 戴维1,2, 肖长发1   

  1. 1.天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387
    2.天津工业大学 材料科学与工程学院, 天津 300387
  • 收稿日期:2018-08-13 修回日期:2019-04-30 出版日期:2019-08-15 发布日期:2019-08-16
  • 通讯作者: 黄庆林
  • 作者简介:高尚鹏(1991—),男,硕士。主要研究方向为膜蒸馏过程。
  • 基金资助:
    国家自然科学基金青年基金项目(21404079);中国科协青年人才托举工程项目(YESS20160168)

Preparation and properties of polyvinylidene fluoride photothermal nanofiber membrane

GAO Shangpeng1,2, HUANG Qinglin1,2(), DAI Wei1,2, XIAO Changfa1   

  1. 1. State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Polytechnic University,Tianjin 300387, China
    2. School of Material Science and Engineering,Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-08-13 Revised:2019-04-30 Online:2019-08-15 Published:2019-08-16
  • Contact: HUANG Qinglin

摘要:

为解决减压膜蒸馏过程中温度极化现象造成膜渗透通量下降的问题,以聚偏氟乙烯(PVDF)为成膜聚合物,引入具有红外致热效应的功能性纳米掺锑二氧化锡(ATO),采用静电纺丝技术制备了PVDF/ATO纳米纤维膜,并对其进行热压处理优化纤维结构和孔径,然后探讨ATO质量分数、热压温度对纤维膜结构和性能的影响,并测试了红外辐照下纤维膜的致热效果和膜蒸馏性能。结果表明:PVDF/ATO纳米纤维膜经170 ℃热压处理后,具有更优异的综合性能;当ATO质量分数为3%时,PVDF/ATO纳米纤维膜经120 s红外辐照后,表面温度升高了40 ℃以上,其膜蒸馏渗透通量相对于原膜从12 L/(m 2·h)提高到22 L/(m 2·h),并且在5 h运行时间内,截盐率保持在99%以上。

关键词: 静电纺丝, 聚偏氟乙烯/掺锑二氧化锡纳米纤维膜, 热压处理, 温度极化, 膜蒸馏性能

Abstract:

In order to solve the problem of the decrease in the membrane permeate flux caused by temperature polarization in the process of vacuum membrane distillation (VMD), polyvinylidene fluoride (PVDF) was used as a membrane-forming polymer, and functional antimony doped tin oxide (ATO) with the infrared-induced thermal effect was introduced. PVDF/ATO nanofiber membranes were prepared by electrospinning and then subjected to heat pressing treatment to optimize the fiber structure and pore size. Then, the influences of ATO addition and heat pressing temperature on the morphologies and properties of the membranes were investigated. The results show that the PVDF/ATO nanofiber membrane has better physical properties after heat pressing treatment at 170 ℃. When the ATO addition amount is 3%, the surface temperature of the PVDF/ATO nanofiber membrane increases by 40 ℃ after infrared irradiation for 120 s, the permeate flux of VMD increases from 12 L/(m 2·h) to 22 L/(m 2·h), and the salt rejection remains above 99% during the operation for 5 h.

Key words: electrospinning, polyvinylidene fluoride/antimony doped tin oxide nanofiber membrane, heat pressing treatment, temperature polarization, membrane distillation performance

中图分类号: 

  • TQ340.47

图1

减压膜蒸馏装置示意图 1—3.5% NaCl溶液水槽;2—恒温加热器;3—循环水泵;4—膜池;5—纳米纤维膜;6—红外灯;7—温度计;8—压力计;9—冷凝管;10—冷凝液收集瓶;11—压力阀;12—水循环真空泵。"

图2

不同热压处理温度静电纺PVDF纤维膜扫描电镜照片"

表1

不同热压温度下PVDF纤维膜性能"

热压处理
温度/℃
厚度/
μm
孔隙率/
%
接触角/
(°)
断裂强度/
MPa
未处理 158 83.3 134.3±2.1 5.32±1.17
160 96 66.5 133.7±2.3 8.56±1.50
170 77 57.8 134.0±1.8 9.09±1.22
180 56 10.3 108.7±2.7 13.6±1.32

图3

PVDF/ATO纳米纤维膜扫描电镜照片"

表2

PVDF/ATO纤维膜性能"

纤维膜 接触角/
(°)
孔隙率/
%
液体渗透压/
MPa
断裂强度/
MPa
M-0 133.5±1.1 57.8 0.15±0.02 9.09±1.22
M-1 132.1±0.9 63.2 0.16±0.01 8.62±0.86
M-3 129.8±1.5 62.6 0.17±0.02 8.07±1.34
M-5 127.4±2.1 61.2 0.15±0.03 6.94±1.04

图4

红外辐照对PVDF/ATO纤维膜表面温度影响"

图5

PVDF/ATO纤维膜的吸光率"

图6

PVDF/ATO纤维膜减压蒸馏截盐率和渗透通量"

[1] DRIOLI E, ALI A, MACEDONIO F . Membrane distillation: recent developments and perspectives[J]. Desalination, 2015,356(2):56-84.
doi: 10.1016/j.desal.2014.10.028
[2] 郑涛杰, 陈志莉, 杨毅 . 膜蒸馏技术应用于海水淡化的技术分析与研究进展[J]. 重庆大学学报(自然科学版), 2017,40(12):71-78.
ZHENG Taojie, CHEN Zhili, YANG Yi . A review and technical analysis about membrane distillation for desalination[J]. Journal of Chongqing Univer-sity(Natural Science Edition), 2017,40(12):71-78.
[3] SHIRAZI M M A, KARGARI A, SHIRAZI M J A . Direct contact membrane distillation for seawater desalination[J]. Desalination & Water Treatment, 2012,49(1-3):368-375.
[4] 孙楠, 李剑锋, 郭淑娟 , 等. 膜蒸馏在废水处理中的研究现状与进展[J]. 工业用水与废水, 2018,49(1):7-11.
SUN Nan, LI Jianfeng, GUO Shujuan , et al. Research status and progress of membrane distillation applied to wastewater treatment[J]. Industrial Water & Wastewater, 2018,49(1):7-11.
[5] CIPOLLINA A . Assessment of temperature polarization in membrane distillation channels by liquid crystal thermography[J]. Desalination & Water Treatment, 2014,6(10):7107-7120.
[6] ALSAADI A S, FRANCIS L, AMY G L . Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation[J]. Journal of Membrane Science, 2014,471(6):138-148.
doi: 10.1016/j.memsci.2014.08.005
[7] TAMBURINI A, PITO P, CIPOLLINA A . A thermochromic liquid crysts image analysis technique to investigate temperature polarization in spacer-filled channels for membrane distillation[J]. Journal of Membrane Science, 2013,447(22):260-273.
doi: 10.1016/j.memsci.2013.06.043
[8] SANTORO S, VIDORRETA I M, SEBASTIAN V , et al. A non-invasive optical method for mapping temperature polarization in direct contact membrane distillation[J]. Journal of Membrane Science, 2017,536(1):156-166.
doi: 10.1016/j.memsci.2017.05.001
[9] POLITANO A, ARGURIO P, DI P G , et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials, 2017,29(2):1-6.
[10] SHIEH Y N, HSIEH P C, CHEN C J . Fabrication of antimony doped tin oxide (ATO) films for heat insulated glass coating[J]. Advanced Materials Research, 2010, 168-170:1670-1674.
doi: 10.4028/www.scientific.net/AMR.168-170
[11] ZHU Y, YIN M, LIU H , et al. Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes[J]. Composites Part B: Engineering, 2017,112:31-37.
doi: 10.1016/j.compositesb.2016.12.025
[12] ASLAN T, ARSLAN S, EYVAZ M , et al. A novel nanofiber microfiltration membrane: fabrication and characterization of tubular electrospun nanofiber (TuEN) membrane[J]. Journal of Membrane Science, 2016,520:616-629.
doi: 10.1016/j.memsci.2016.08.014
[13] MATSUYAMA H, TERAMOTO M, KUDARI S , et al. Effect of diluents on membrane formation via thermally induced phase separation[J]. Journal of Applied Polymer Science, 2001,82(1):169-177.
doi: 10.1002/(ISSN)1097-4628
[14] LIAO Y, WANG R, TIAN M , et al. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation[J]. Journal of Membrane Science, 2013, 425-426(1):30-39.
doi: 10.1016/j.memsci.2012.09.023
[15] 张博亚, 李佳慧, 张如全 , 等. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018,39(7):15-20.
ZHANG Boya, LI Jiahui, ZHANG Ruquan , et al. Preparation and properties of electrospun polyacrylonitrile/copper sulfate nanofiber membrane[J]. Journal of Textile Research, 2018,39(7):15-20.
doi: 10.1177/004051756903900103
[16] 覃小红, 王善元 . 纺丝液的导电性对静电纺丝单根纤维的直径及稳定长度的影响[J]. 东华大学学报(自然科学版), 2007,33(2):270-273.
QIN Xiaohong, WANG Shanyuan . Effect of conductance solution on diameter vs axial coordinate and stable length of one single nanofibers in electrospining[J]. Journal of Donghua University(Natural Science Edition), 2007,33(2):270-273.
[1] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[2] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[3] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[4] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[5] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[6] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[7] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[8] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[9] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[10] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[11] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
[12] 李国庆, 李平平, 刘瀚霖, 李妮. 聚丙烯腈/ 聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(03): 20-25.
[13] 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25.
[14] 刘宇健, 谭晶, 陈明军, 余韶阳, 李好义, 杨卫民. 静电纺纳米纤维纱线研究进展[J]. 纺织学报, 2020, 41(02): 165-171.
[15] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr( VI) 和Pb( II) 的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邢明杰;唐佃花;郁崇文. 工艺参数对喷气纱强力的影响[J]. 纺织学报, 2005, 26(1): 49 -51 .
[2] 檀革银;靳向煜;唐守星. 非织造用转基因棉的脱脂工艺及性能研究[J]. 纺织学报, 2004, 25(04): 24 -25 .
[3] 林建龙;王小北;顾翔. 新型电脑刺绣机挑线机构设计分析[J]. 纺织学报, 2006, 27(12): 105 -108 .
[4] 张强;王悌义. 赫马(Hema)型喷嘴流场测定与分析[J]. 纺织学报, 1995, 16(02): 19 -22 .
[5] 张佩华;潘伯荣;汤振民;邱佩芬. 偏心拉杆式牵拉机构的测试与分析[J]. 纺织学报, 1995, 16(02): 46 -48 .
[6] 李济群. 国产毛 C07型自调匀整装置延迟时间的简约计算式[J]. 纺织学报, 1993, 14(03): 19 -21 .
[7] 杨明远;李立风;李繁亭;钱宝钧. 丙烯腈-丝朊接枝共聚纤维中的相分离与互相渗透的网络结构[J]. 纺织学报, 1986, 7(06): 11 -16 .
[8] 孙福;张国庆;孙艳秋. 导电炭黑/聚酯复合材料的性能[J]. 纺织学报, 2008, 29(10): 9 -11 .
[9] 郭兴峰. 飞轮缠绕用圆环织物的设计[J]. 纺织学报, 2007, 28(7): 52 -54 .
[10] 石风俊;郑德均. 织物折皱回复性能建模研究[J]. 纺织学报, 2007, 28(10): 38 -41 .