纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 106-111.doi: 10.13475/j.fzxb.20180804506

• 染整与化学品 • 上一篇    下一篇

棉织物的硅溶胶疏水整理

谭淋, 施亦东(), 周文雅   

  1. 四川大学 轻工科学与工程学院, 四川 成都 610065
  • 收稿日期:2018-08-15 修回日期:2020-01-15 出版日期:2020-04-15 发布日期:2020-04-27
  • 通讯作者: 施亦东
  • 作者简介:谭淋(1987—),男,副研究员,博士。主要研究方向为功能纤维材料。

Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol

TAN Lin, SHI Yidong(), ZHOU Wenya   

  1. College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2018-08-15 Revised:2020-01-15 Online:2020-04-15 Published:2020-04-27
  • Contact: SHI Yidong

摘要:

为实现超疏水织物的绿色加工,采用正硅酸乙酯(TEOS)为前驱体,乙醇和水为溶剂制备硅溶胶预缩体对棉织物进行疏水整理,研究各工艺因素对棉织物疏水性能的影响,重点分析预缩体的制备、硅烷偶联剂的添加、低温烘干工艺与提高整理织物疏水性的相关性。结果表明:棉织物表面的SiO2纳米粒子形成的粗糙表面与织物表面结合的疏水脂肪烃链可赋予织物良好的疏水性;在TEOS量为0.1 mol,乙醇量为0.9 mol,水的量为0.8 mol,先二浸二轧硅溶胶,再浸轧十六烷基三甲氧基硅烷醇溶剂优化工艺条件下,整理棉织物的水接触角可达152.1°,棉织物的力学性能得到提高。

关键词: 硅溶胶, 棉织物, 涤纶织物, 疏水性, 疏水整理, SiO2纳米粒子

Abstract:

In order to obtain the super hydrophobicity in cotton fabrics through an environmentally friendly approach, the present study applied tetraethylorthosilicate(TEOS) as precursor, ethanol and water as the binary solvent, and successfully obtained the pre-condenser of silica sol. The cotton fabrics with the pre-condenser of silica sol, and the effect of finishing parameters was systematically studied on the hydrophobicity of fabrics, especially the correlation between the hydrophobicity and these parameters, including preparation of pre-condenser, addition of silane coupling agents and drying under low temperature. Results show that both rough surface derived from SiO2 nanoparticles on the fabric and hydrophobic aliphatic hydrocarbon chain bound to the fabric surface endows the fabric good hydrophobicity. The optimal parameters used to obtain fabric hydrophobicity in this research is as follows: TEOS(0.1 mol), ethanol(0.9 mol), water(0.8 mol), dipping and rolling with silica sol twice, and dipping and rolling with hexadecyl trimethoxysilane in ethanol. Under such optimal process, the water contact angle of cotton fabric reached to 152.1°, and the mechanical property is also improved.

Key words: silica sol, cotton fabric, polyster fabric, hydrophobicity, hydrophobic finishing, SiO2 nanoparticle

中图分类号: 

  • TS195.5

表1

pH值调节剂对织物水接触角的影响"

pH值调节剂 pH值 水接触角/(°)
棉织物 涤纶织物
未整理 0.0 120.4
盐酸 3 130.4 120.9
醋酸 4~5 108.6 119.8
氨水 10~11 116.5 121.6

表2

回流对织物水接触角的影响"

整理方法 水接触角/(°)
棉织物 涤纶织物
未整理 0.0 120.4
未经回流 120.6 121.4
回流 127.0 135.6

表3

硅溶胶制备均匀试验表"

试验
序号
TEOS的
X1/
mol
乙醇的
X2/
mol
水的量
X3/
mol
温度
X4/
时间
X5/
h
水接触
Y/
(°)
1 0.025 0.4 0.4 60 8 128.25
2 0.050 0.6 0.7 45 7 142.60
3 0.075 0.8 0.3 65 6 147.88
4 0.100 0.3 0.6 50 5 140.43
5 0.125 0.5 0.2 70 4 134.64
6 0.150 0.7 0.5 55 3 138.74
7 0.175 0.9 0.8 75 9 131.37

表4

不同添加剂及质量分数对疏水性的影响"

硅烷偶联剂 水接触角/(°)
名称 质量分数/% 棉织物 涤纶织物
2 121.6 118.8
HDTMS 4 133.3 121.5
6 124.0 111.8
8 115.9 116.6
2
DOTMS 4 102.3 108.6
6 127.7 96.0
8 110.1 110.7
2 119.9 118.3
OTES 4 106.7 115.5
6 122.2 101.3
8 108.1 120.6

表5

一步法和二步法整理对织物疏水性的影响"

整理方法 水接触角/(°)
棉织物 涤纶织物
未整理 0.0 120.4
一步法 117.5 121.0
二步法 130.4 123.9

表6

不同烘干温度对疏水性及表观颜色的影响"

烘干温度/℃ 水接触角/(°) 表观颜色
55 152.1 正常
75 149.2 正常
95 147.1 发黄
115 131.8 发黄

图1

整理前后棉织物SEM照片(×1 000)"

图2

整理前后涤纶织物的SEM照片"

图3

整理前后棉织物和涤纶织物的红外光谱图"

表7

整理前后棉织物的物理力学性能"

样品名称 白度/% 断裂强力/N 透气性/
(L·m-2·s-1)
经向 纬向
原棉织物 77.1 266 160 3 526.20
SiO2整理棉织物 81.3 298 175 1 620.89
[1] 高雪峰, 江雷. 天然超疏水生物表面研究的新进展[J]. 物理, 2006,35(7):559-564.
GAO Xuefeng, JIANG Lei. Recent studies of natural superhydophobic bio-surfaces[J]. Physics, 2006,35(7):559-564.
[2] 郑黎俊, 乌学东, 楼增, 等. 表面微细结构制备超疏水表面[J]. 科学通报, 2004,49(17):1691-1699.
ZHENG Lijun, WU Xuedong, LOU Zeng, et al. Preparation of superhydrophobic surface by surface microstructure[J]. Chinese Science Bulletin, 2004,49(17):1691-1699.
[3] 陈荣圻. PFOS与PFOA替代品趋向新进展[J]. 印染助剂, 2012,29(12):1-10.
CHEN Rongqi. Development and trend of substitutes to PFOS and PFOA[J]. Textile Auxiliaries, 2012,29(12):1-10.
[4] XU Lihui, ZHUANG Wei, XU Bi, et al. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization[J]. Applied Surface Science, 2011,257:5491-5498.
[5] TEXTOR Torsten, MAHLTIG Boris. A sol-gel based surface treatment for preparation of water repellent antistatic textiles[J]. Applied Surface Science, 2010,256:1668-1674.
[6] MANATUNGA D C, SILVA R M D, SILVA K M N D. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials[J]. Applied Surface Science, 2016,360:777-788.
[7] SHEN Keke, YU Miao, LI Qianqian, et al. Synjournal of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics[J]. Applied Surface Science, 2017,426:694-703.
[8] 余锡宾, 吴虹. 正硅酸乙酯的水解, 缩合过程研究[J]. 无机材料学报, 1996,11(4):703-707.
YU Xibin, WU Hong. Studies oil the hydrolysis and polycondensation process of TEOS[J]. Journal of Inorganic Materials, 1996,11(4):703-707.
[9] 郑文芝. 二氧化硅气凝胶研制及其结构性能研究[D]. 广州:华南理工大学, 2010: 45-48.
ZHENG Wenzhi. The preparation of silica aerogels and their structures and properties[D]. Guangzhou:South China University of Technology, 2010: 45-48.
[10] JEONG A Y, KOO S M, KIM D P. Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel[J]. Journal of Sol-Gel Science and Technology, 2000,19(1-3):483-487.
[11] PIPATCHANCHAI T, SRIKULKIT K. Hydrophobicity modification of woven cotton fabric by hydrophobic fumed silica coating[J]. Journal of Sol-Gel Science and Technology, 2007,44(2):119-123.
[12] BERNARDES A A, EMANUELLI C A, COFFERRI P, et al. Octadecyl-modified silicas obtained by non-hydrolytic condensation of a C18-hybrid silica sol on a silica surface[J]. Journal of Non-Crystalline Solids, 2017. DOI: 10.1016/j.jnoncrysol.2017.03.033.
pmid: 21286235
[1] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[2] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[3] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[4] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[5] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[6] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[7] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[8] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[9] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P( St-NMA) 光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[10] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[11] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
[12] 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196.
[13] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[14] 高思梦, 王鸿博, 杜金梅, 王文聪. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(02): 89-94.
[15] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!