纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 133-141.doi: 10.13475/j.fzxb.20180805309

• 综合述评 • 上一篇    下一篇

静电纺丝法制备高效空气过滤材料的研究进展

刘朝军1,2, 刘俊杰1(), 丁伊可2, 张建青2, 黄禄英2   

  1. 1.室内空气环境质量控制天津市重点实验室, 天津 300072
    2.浙江金海环境技术股份有限公司, 浙江 绍兴 311817
  • 收稿日期:2018-08-23 修回日期:2019-01-29 出版日期:2019-06-15 发布日期:2019-06-25
  • 通讯作者: 刘俊杰
  • 作者简介:刘朝军(1981—),男,高级工程师,博士。主要从事高效低阻空气过滤材料及过滤系统相关研究。
  • 基金资助:
    十三五国家重点研发计划绿色建筑与工业化专项资助项目(2018YFC0705202)

Research progress in preparation of high-efficiency air filter materials by electrospinning

LIU Chaojun1,2, LIU Junjie1(), DING Yike2, ZHANG Jianqing2, HUANG Luying2   

  1. 1. Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin 300072, China
    2. Zhejiang Goldensea Environment Technology Group, Shaoxing, Zhejiang 311817, China
  • Received:2018-08-23 Revised:2019-01-29 Online:2019-06-15 Published:2019-06-25
  • Contact: LIU Junjie

摘要:

为更好地通过静电纺丝技术制备高效空气过滤材料,促进静电纺丝纳米纤维膜在高效空气过滤领域的产业化应用,全面综述了近年来国内外关于静电纺丝技术制备高效低阻和功能型高效空气过滤材料的最新研究成果。对具有球状、纳米蛛网结构的三维立体高效低阻滤材、驻极体增强高效低阻滤材,以及具有耐高温、抗菌和可降解特性的功能型滤材进行了重点介绍,并回顾了其研究进展,分析和讨论了现有研究中存在的问题和不足。认为静电纺丝纳米纤维膜具有生产工艺简单高效、结构可控、分离精度高、适用性广泛等显著优势,在高效空气过滤领域的发展和应用前景十分广阔。

关键词: 静电纺丝, 空气过滤, 纳米纤维, 高效过滤材料

Abstract:

In order to better prepare high-efficiency air filter materials by electrospinning and promote the industrial application of electrospun nanofiber membranes in the field of high-efficiency air filtration, a comprehensive review to the recent studies about the preparation of high-efficiency air filter materials with low-resistance and functional properties were reviewed. The three-dimensional high-efficiency filter material with spherical and spider-web like structures, the electret-enhanced filter material, and the functional filter material with high temperature resistance, antibacterial and degradable characteristics were introduced emphatically. The research progress were reviewed, the problems and deficiencies in the existing research were analyzed and discussed. According to the research, the electrospun nanofiber membrane has advantages of simple and efficient production process, controllable morphology, high separation precision and wide applicability. The development and application prospect in the field of high efficiency air filtration is very broad.

Key words: electrospinning, air filtration, nanofiber, high-efficiency filter material

中图分类号: 

  • TQ028.2

图1

自由表面静电纺丝制备PAN三维立体膜装置示意图"

图2

多孔球状结构的PLA三维立体膜SEM照片"

图3

不同氯盐种类的锦纶66复合膜SEM照片"

图4

900 ℃煅烧后所得γ-氧化铝纤维膜经数次弯折之后的光学照片和扫描电镜照片"

图5

从CNT阵列中提取CNT膜示意图"

[1] OBERDORSTER G, UTELL M J. Ultrafine particles in the urban air:to the respiratory tract-and beyond[J]. Environmental Health Perspectives, 2002,110(8):440-441.
[2] SONG Y, XIE Z S, ZENG L, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization[J]. Atmospheric Environment, 2006,40(8):1526-1537.
[3] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2014,6:6205.
doi: 10.1038/ncomms7205 pmid: 25683688
[4] DAVID Y H, CHEN S C, ZUO Z L. PM2.5 in China:measurements,sources,visibility and health effects,and mitigation[J]. Particuology, 2014,13(2):1-26.
[5] PETERS A, DOCKERY D W, MULLER J E, et al. Increased particulate air pollution and the triggering of myocardial infarction[J]. Circulation, 2001,103(23):2810-2815.
doi: 10.1161/01.cir.103.23.2810 pmid: 11401937
[6] BRAUER M, AVILA-CASADO C, FORTOUL T I, et al. Air pollution and retained particles in the lung[J]. Environmental Health Perspectives, 2001,109(10):1039-1043.
doi: 10.1289/ehp.011091039 pmid: 11675269
[7] HAMRA G B, GUHA N, COHEN A, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis.[J]. Environ Health Perspect, 2014,122(9):906-911.
doi: 10.1289/ehp/1408092 pmid: 24911630
[8] KAMPA M, CASTANAS E. Human health effects of air pollution[J]. Environmental Pollution, 2008,151(2):362.
doi: 10.1016/j.envpol.2007.06.012 pmid: 17646040
[9] 伯奇斯特.C.A, 卡恩.J.E, 福勒.A.B. 空气净化手册[M]. 时友人,译. 北京:原子能出版社, 1981: 46.
BIRCHSTER C A, KAHN J E, FOWLER A B. Air Pu-rification Manual [M]. SHI Youren, Translating. Beijing: Atomic Energy Press, 1981: 46.
[10] KO F, WAN Y. Introduction to Nanofiber Mate-rials[M]. Cambridge: Cambridge University Press, 2014: 44-48.
[11] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers[J]. Journal of electrostatics, 1995,35(2/3):151-160.
[12] LI D, XIA Y. Electrospinning of Nanofibers: Reinventing the Wheel[J]. Advanced Materials, 2010,16(14):1151-1170.
[13] SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015,44(3):790-814.
doi: 10.1039/c4cs00226a pmid: 25408245
[14] PARK H S, PARK Y O. Filtration properties of electrospun ultrafine fiber webs[J]. Korean Journal of Chemical Engineering, 2005,22(1):165-172.
[15] SAWHNEY A, CONDON B, SINGH K, et al. Modern applications of nanotechnology in textiles[J]. Textile Research Journal, 2008,78(8):731-739.
[16] QIN X H, WANG S Y. Filtration properties of electrospinning nanofibers[J]. Journal of Donghua University, 2007,102(2):1285-1290.
[17] 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 8-20.
DING Bin, YU Jianyong. Electrospinning and Nano-fiber[M]. Beijing: China Textile & Apparel Press, 2011: 8-20.
[18] NAKATA K, KIM S H, OHKOSHI Y, et al. Electrospinning of poly (ether sulfone) and evaluation of the filtration efficiency[J]. Fiber, 2007,63(12):307-312.
[19] ZHANG Q, WELCH J, PARK H, et al. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats[J]. Journal of Aerosol Science, 2010,41(2):230-236.
[20] AHN Y C, PARK S K, KIM G T, et al. Development of high efficiency nanofilters made of nanofibers[J]. Current Applied Physics, 2006,6(6):1030-1035.
[21] CHRISTANTI Y, WALKER L M. Surface tension driven jet break up of strain-hardening polymer solutions[J]. Journal of Non-Newtonian Fluid Mechanics, 2001,100(1):9-26.
[22] GAO H, YANG Y, AKAMPUMUZA O, et al. A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture[J]. Environmental Science Nano, 2017,4(4):864-875.
[23] WANG Z, ZHAO C, PAN Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtra-tion[J]. Journal of Colloid & Interface Science, 2015,441:121-129.
pmid: 25499733
[24] DING B, LI C R, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006,17(15):3685-3694.
[25] WANG X, DING B, YU J, et al. Electro-netting: fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing[J]. Nanoscale, 2011,3(3):911-915.
doi: 10.1039/c0nr00783h pmid: 21152536
[26] 汪小亮, 冯雪为, 潘志娟. 双喷静电纺聚酰胺6/聚酰胺66纳米蛛网纤维膜的制备及其空气过滤性能[J]. 纺织学报, 2015,36(11):6-11.
WANG Xiaoliang, FENG Xuewei, PAN Zhijuan. Preparation of PA6/PA66 nano-net membranes by double-needle electrospinning and its air filtration properties[J]. Journal of Textile Research, 2015,36(11):6-11.
[27] WANG N, WANG X, DING B, et al. Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtra-tion[J]. Journal of Materials Chemistry, 2011,22(4):1445-1452.
[28] 汪策. 纳米纤维多孔膜的制备及其在空气过滤中的应用[D]. 上海:东华大学, 2015: 29-43.
WANG Ce. Preparation and characterization of composite porous nanofibrous membranes for air filtration[D]. Shanghai: Donghua University, 2015: 29-43.
[29] ZHANG S, LIU H, YU J, et al. Microwave structured polyamide-6 nanofiber/net membrane with embedded poly(m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration[J]. Journal of Materials Chemistry A, 2016,4(16):6149-6157.
[30] WANG N, YANG Y J, SALEM S. ALDEYAB, et al. Ultra-light 3D nanofibre-nets binary structured nylon 6-polyacrylonitrile membranes for efficient filtration of fine particulate matter[J]. Journal of Materials Chemistry A, 2015,3(47):23946-23954.
[31] ZHANG S, LIU H, ZUO F, et al. A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter[J]. Small, 2017,13(10):1603151.
[32] TSAI P P, SCHREUDER-GIBSON H, GIBSON P. Different electrostatic methods for making electret fil-ters[J]. Journal of Electrostatics, 2002,54(3):333-341.
[33] SAELIM H, TANTHAPANICHAKOON W, KANAOKA C. Structural improvement to quadruple service life of a high-efficiency electret filter[J]. Science & Technology of Advanced Materials, 2016,6(3):307-311.
[34] THAKUR R, DAS D, DAS A. Optimization study to improve filtration behaviour of electret filter media[J]. Journal of the Textile Institute, 2016,107(11):1456-1462.
[35] WANG S, ZHAO X, YIN X, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. Acs Applied Materials & Interfaces, 2016,8(36):23985-23994.
pmid: 27552028
[36] LI X, WANG N, FAN G, et al. Electreted polyetherimide-silica fibrous membranes for enhanced filtration of fine particles[J]. J Colloid Interface Sci, 2015,439:12-20.
doi: 10.1016/j.jcis.2014.10.014 pmid: 25463170
[37] 赵兴雷. 空气过滤用高效低阻纳米纤维材料的结构调控及构效关系研究[D]. 上海:东华大学, 2017: 92-103.
ZHAO Xinglei. Tunable fabrication of nanofiberous materials with high-efficiency and low-resistance and their application in air filtration[D]. Shanghai: Donghua University, 2017: 92-103.
[38] 张杰. 电气石改性熔喷过滤材料的工艺与效能的研究[D]. 上海:东华大学, 2012: 31-43.
ZHANG Jie. Studies on technology and efficiency of tourmaline modified melt-blown filter material[D]. Shanghai: Donghua University, 2012: 31-43.
[39] LI W J, LAURENCIN C T, CATERSON E J, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering.[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010,60(4):613-621.
[40] 徐浩. PSA纳米纤维复合滤材的制备和性能研究[D]. 上海:东华大学, 2017: 27-36.
XU Hao. Preparation and performance research of PSA nanofibers composite filter[D]. Shanghai: Donghua University, 2017: 27-36.
[41] 王成, 姚理荣, 陈宇岳. 芳纶纳米纤维毡/聚苯硫醚高温超过滤材料的制备及其性能[J]. 纺织学报, 2013,34(7):1-4.
WANG Cheng, YAO Lirong, CHEN Yuyue. Preparation and properties of high temperature resistant ultrafiltration aramid nanofiber/PPS composite material[J]. Journal of Textile Research, 2013,34(7):1-4.
[42] YU S, YU H, ZHU M, et al. Development progress of electrospun ceramic fibers[J]. Synthetic Fiber in China, 2010,39(3):5.
[43] WANG Y, LI W, XIA Y, et al. Electrospun flexible self-standing g-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media[J]. Journal of Materials Chemistry A, 2014,2(36):15124-15131.
[44] MAO X, SI Y, CHEN Y, et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration[J]. Rsc Advances, 2012,2(32):12216-12223.
[45] MAO X, BAI Y, YU J, et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. Journal of the American Ceramic Society, 2016,99(8):2760-2768.
[46] 欧阳玉. 碳纳米管结构研究[D]. 长沙:湖南大学, 2008: 16-17.
OUYANG Yu. Study on the structure of carbon nano-tubes[D]. Changsha: Hunan University, 2008: 16-17.
[47] BACSA R R, LAURENT C, PEIGNEY A, et al. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process[J]. Chemical Physics Letters, 2000,323(5):566-571.
[48] PEIGNEY A, LAURENT C, FLAHAUT E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon, 2001,39(4):507-514.
[49] ZHANG R, WEN Q, QIAN W, et al. Superstrong ultralong carbon nanotubes for mechanical energy sto-rage[J]. Advanced Materials, 2011,23(30):3387-3391.
pmid: 21671453
[50] JIANG K, WANG J, LI Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications[J]. Advanced Materials, 2015,23(9):1154-1161.
doi: 10.1002/adma.201003989 pmid: 21465707
[51] 王倩楠. 高温气体过滤材料的制备及过滤性能的研究[D]. 上海:东华大学, 2017: 89-104.
WANG Qiannan. Synthesis and filtration properties of hot gas filters for removal of ultrafine particles[D]. Shanghai: Donghua University, 2017: 89-104.
[52] 王哲. 多级结构微纳米纤维的结构调控及其空气过滤性能[D]. 苏州:苏州大学, 2017: 86-104.
WANG Zhe. Structure regulation of herarchical micro-/nano-scale fibers and their performance of air fitra-tion[D]. Suzhou: Soochow University, 2017: 86-104.
[53] MOREAU N. Respiratory toxicity of multi-wall carbon nanotubes[J]. Toxicology & Applied Pharmacology, 2005,207(3):221-231.
doi: 10.1016/j.taap.2005.01.008 pmid: 16129115
[54] PULSKAMP K, DIABATÉ S, KRUG H F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants[J]. Toxicology Letters, 2007,168(1):58-74.
doi: 10.1016/j.toxlet.2006.11.001 pmid: 17141434
[55] KIM S J, NAM Y S, RHEE D M, et al. Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane[J]. European Polymer Journal, 2007,43(8):3146-3152.
[56] WANG Z, ZHAO R, ZHAO R, et al. A novel hierarchical structured poly(lactic acid)/titania fibrous membrane with excellent antibacterial activity and air filtration performance[J]. Journal of Nanomaterials, 2016,2016:1-17.
[57] ZHONG Z, XU Z, SHENG T, et al. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods[J]. Acs Applied Materials & Interfaces, 2015,7(38):21538-21544.
pmid: 26360532
[58] RUPARELIA J P, CHATTERJEE A K, DUTTAGUPTA S P, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles[J]. Acta Biomaterialia, 2008,4(3):707-716.
doi: 10.1016/j.actbio.2007.11.006 pmid: 18248860
[59] KANG S, PINAULT M, PFEFFERLE L D, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2007,23(17):8670-8673.
pmid: 17658863
[60] 马利婵, 王娇娜, 李丽, 等. 静电纺空气过滤用PET/CTS抗菌复合纳米纤维膜的制备[J]. 高分子学报, 2015(2):221-227.
MA Lichan, WANG Jiaona, LI Li, et al. Preparation of PET/CTS antibacterial composites nanofiber membranes used for air filter by electrospinning[J].Acta Polymerica Sinica, 2015(2):221-227.
[61] JEONGAN C, BYEONG JOON Y, GWI-NAM B, et al. Herbal extract incorporated nanofiber fabricated by an electrospinning technique and its application to antimicrobial air filtration[J]. Acs Applied Materials & Interfaces, 2015,7(45):25313-25320.
doi: 10.1021/acsami.5b07441 pmid: 26505783
[62] FANG Q, ZHU M, YU S, et al. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials[J]. Materials Science & Engineering B, 2016,214:1-10.
[63] LIU B, ZHANG S, WANG X, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid & Interface Science, 2015,457:203-211.
pmid: 26188726
[64] WANG C, WU S, JIAN M, et al. Silk nanofibers as high efficient and lightweight air filter[J]. Nano Research, 2016,9(9):1-8.
[1] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[2] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[3] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[4] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[5] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[6] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[7] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2 药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[8] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[9] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[10] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[11] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[12] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[13] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[14] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[15] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!