纺织学报 ›› 2019, Vol. 40 ›› Issue (09): 22-27.doi: 10.13475/j.fzxb.20180807006
杜晓冬1,2, 林芳兵1,2, 蒋金华1,2(), 陈南梁1,2, 刘燕平2
DU Xiaodong1,2, LIN Fangbing1,2, JIANG Jinhua1,2(), CHEN Nanliang1,2, LIU Yanping2
摘要:
为增强聚酰亚胺纤维的界面黏附性能,采用氧等离子体技术对聚酰亚胺纤维进行不同时间的改性处理,借助X射线光电子能谱仪、场发射扫描电子显微镜、接触角表面性能测定仪,以及单纤维碎裂法等分析改性处理对聚酰亚胺纤维表面性能的影响。结果表明:在气压为10 Pa,功率为100 W的工艺条件下,采用氧等离子体处理4 min时聚酰亚胺纤维表面改性效果最佳;与原丝相比,此时纤维表面O与C元素含量比增加了108%,含氧基团C—O、C=O的含量分别由7.6%、10.3%增加到20.4%、19.2%;纤维表面产生均匀致密的微裂缝,其与树脂间界面剪切强度由29.88 MPa增加到46.13 MPa,增强率达54%;聚酰亚胺纤维与水的接触角从110°左右减小至55°以下,由疏水表面变为亲水表面。
中图分类号:
[1] | HASEGAWA M, HORIE K. Photophysics, photochemistry, and optical properties of polyimides[J]. Progress in Polymer Science, 2001,26(2):259-335. |
[2] | 常晶菁, 牛鸿庆, 武德珍. 聚酰亚胺纤维的研究进展[J]. 高分子通报, 2017(3):19-27. |
CHANG Jingjing, NIU Hongqing, WU Dezhen. Research progress of polyimide fibers[J]. Chinese Polymer Bulletin, 2017(3):19-27 | |
[3] | KANEDA T, KATSURA T, NAKAGAWA K, et al. High-strength-high-modulus polyimide fibers: II: spinning and properties of fibers[J]. Journal of Applied Polymer Science, 2010,32(1):3151-3176. |
[4] | 林芳兵, 蒋金华, 陈南梁, 等. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018,39(5):14-19. |
LIN Fangbing, JIANG Jinhua, CHEN Nanliang, et al. High-performance polyimide fiber and its weavability[J]. Journal of Textile Research, 2018,39(5):14-19. | |
[5] | TIAN Guofeng, CHEN Binbin, QI Shengli, et al. Enhanced surface free energy of polyimide fibers by alkali treatment and its interfacial adhesion behavior to epoxy resins[J]. Composite Interfaces, 2016,23(2):145-155. |
[6] | YUN H K, CHO K, KIM J K, et al. Adhesion improvement of epoxy resin/polyimide joints by amine treatment of polyimide surface[J]. Polymer, 1997,38(4):827-834. |
[7] | CHAN C M, KO T M, HIRAOKA H. Polymer surface modification by plasmas and photons[J]. Surface Science Reports, 1996,24(1):1-54. |
[8] | SUN Xuyang, BU Junfeng, LIU Weiwei, et al. Surface modification of polyimide fibers by oxygen plasma treatment and interfacial adhesion behavior of a polyimide fiber/epoxy composite[J]. Science & Engineering of Composite Materials, 2015,24(4):477-484. |
[9] | KELLY A, TYSON W R. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics & Physics of Solids, 1965,13(6):329-350. |
[10] | 张焕侠. 碳纤维表面和界面性能研究及评价[D]. 上海:东华大学, 2014: 27-29. |
ZHANG Huanxia. Research and evaluation of carbon fiber surface and interface properties[D]. Shanghai: Donghua University, 2014: 27-29. | |
[11] | SIMIONESCU C I, DENES F. Use of plasma chemistry in the field of synjournal and modification of the natural macromolecular compounds[J]. Cellulose Chemistry & Technology, 1980,14:285. |
[12] | 陈平, 陈辉. 先进聚合物基复合材料界面及纤维表面改性[M]. 北京: 科学出版社, 2010: 20-24. |
CHEN Ping, CHEN Hui. Advanced Polymer Matrix Composite Interface and Fiber Surface Modifica-tion[M]. Beijing: Science Press, 2010: 20-24. | |
[13] | JIA Caixia, CHEN Ping, LI Wei, et al. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science, 2011,257(9):4165-4170. |
[14] | 张承双. 氧气等离子体改性对PBO纤维表面及PBO/PPESK复合材料界面的影响[D]. 大连:大连理工大学, 2009: 14-16. |
ZHANG Chengshuang. Effect of oxygen plasma modification on the surface properties of PBO fibers and interface properties of PBO/PPESK composites[D]. Dalian: Dalian University of Technology, 2009: 14-16. | |
[15] |
PARK J M, KIM D S, KIM S R. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J]. Journal of Colloid & Interface Science, 2003,264(2):431-445.
doi: 10.1016/S0021-9797(03)00419-3 pmid: 16256662 |
[16] | 孙伟, 杨冰磊. 低温等离子体改善聚酰亚胺纤维亲水性研究[J]. 产业用纺织品, 2008,26(11):27-30. |
SUN Wei, YANG Binglei. Study on low temperature plasma modification for surface hydrophilic of polyimide fiber[J]. Technical Textiles, 2008,26(11):27-30. | |
[17] | 杨建忠, 杨冰磊. 利用低温等离子体处理实现聚酰亚胺纤维表面改性[J]. 西安工程大学学报, 2009,23(2):136-140. |
YANG Jianzhong, YANG Binglei. Surface modification effect of polyimide fiber by low temperature plasma treatment[J]. Journal of Xi'an Polytechnic University, 2009,23(2):136-140. |
[1] | 林芳兵 蒋金华 陈南梁 杜晓冬 苏传丽. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018, 39(05): 14-19. |
[2] | 王春红 陈祯 李园平 YOUSFANI Sheraz Hussain Siddique 陈雅颂. 竹原纤维的分级提取及其性能[J]. 纺织学报, 2017, 38(11): 9-15. |
[3] | 杨莉 张艳艳 杨稳 苏瑞. 服用聚酰亚胺纤维织物的热学性能[J]. 纺织学报, 2017, 38(08): 62-67. |
[4] | 洪剑寒 潘志娟 李敏 姚穆. 氧气等离子体预处理对UHMWPE/PANI复合纤维导电性能的影响[J]. 纺织学报, 2013, 34(6): 1-7. |
[5] | 李颖 王鸿博 高卫东. 磁控溅射碳纤维基纳米铜薄膜的结构及其性能[J]. 纺织学报, 2012, 33(9): 10-14. |
[6] | 尹朝清, 徐园, 张清华. 聚酰亚胺纤维及其阻燃特性[J]. 纺织学报, 2012, 33(6): 116-120. |
[7] | 李文涛, 姚淑焕, 彭淑萍, 吴萌, 张超波, 张再兴. 改性聚芳噁二唑纤维的热氧老化性能[J]. 纺织学报, 2012, 33(6): 151-154. |
[8] | 李书干 焦晓宁. 聚酰亚胺针刺布与聚苯硫醚针刺布的热稳定性与燃烧性能对比[J]. 纺织学报, 2012, 33(12): 35-39. |
[9] | 王春莹;王潮霞. 常压介质阻挡放电对涤纶春亚纺织物的表面改性[J]. 纺织学报, 2010, 31(7): 97-101. |
[10] | 钱坤;曹海建;盛东晓;庄粟裕. 低温等离子体处理对芳纶界面性能的影响[J]. 纺织学报, 2010, 31(10): 10-13. |
[11] | 王萌;吴敏;葛明桥. 纳米SiO2对淀粉浆膜耐磨损性能的影响[J]. 纺织学报, 2006, 27(7): 67-70. |
|