纺织学报 ›› 2019, Vol. 40 ›› Issue (09): 22-27.doi: 10.13475/j.fzxb.20180807006

• 纤维材料 • 上一篇    下一篇

氧等离子体改性对聚酰亚胺纤维表面性能的影响

杜晓冬1,2, 林芳兵1,2, 蒋金华1,2(), 陈南梁1,2, 刘燕平2   

  1. 1.东华大学 高性能纤维及制品教育部重点实验室, 上海 201620
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2018-08-27 修回日期:2019-01-24 出版日期:2019-09-15 发布日期:2019-09-23
  • 通讯作者: 蒋金华
  • 作者简介:杜晓冬(1994—),女,硕士生。主要研究方向为高性能聚酰亚胺纤维及其复合材料。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303300);国家自然科学基金项目(11472077);中央高校基本科研业务费专项资金资助项目(2232019G-02);中央高校基本科研业务费专项资金资助项目(2232018G-06)

Influence of oxygen plasma modification on surface properties of polyimide fiber

DU Xiaodong1,2, LIN Fangbing1,2, JIANG Jinhua1,2(), CHEN Nanliang1,2, LIU Yanping2   

  1. 1. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-08-27 Revised:2019-01-24 Online:2019-09-15 Published:2019-09-23
  • Contact: JIANG Jinhua

摘要:

为增强聚酰亚胺纤维的界面黏附性能,采用氧等离子体技术对聚酰亚胺纤维进行不同时间的改性处理,借助X射线光电子能谱仪、场发射扫描电子显微镜、接触角表面性能测定仪,以及单纤维碎裂法等分析改性处理对聚酰亚胺纤维表面性能的影响。结果表明:在气压为10 Pa,功率为100 W的工艺条件下,采用氧等离子体处理4 min时聚酰亚胺纤维表面改性效果最佳;与原丝相比,此时纤维表面O与C元素含量比增加了108%,含氧基团C—O、C=O的含量分别由7.6%、10.3%增加到20.4%、19.2%;纤维表面产生均匀致密的微裂缝,其与树脂间界面剪切强度由29.88 MPa增加到46.13 MPa,增强率达54%;聚酰亚胺纤维与水的接触角从110°左右减小至55°以下,由疏水表面变为亲水表面。

关键词: 聚酰亚胺纤维, 氧等离子体改性处理, 表面化学组成, 表面形貌, 界面结合性能, 浸润性

Abstract:

In order to enhance the interface adhesion performance, polyimide fiber was modified by oxygen plasma for different time periods and the influence of modification on the surface properties of polyimide fiber was analyzed by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, single fiber fragmentation method and contact angle measurement. The results show that the surface properties of polyimide fibers are improved remarkably after 4 min treatment under the conditions of oxygen plasma modification with pressure of 10 Pa and power of 100 W. At the treatment conditions, the content ratio of O to C on the surface is increased by 108%, compared with untreated fibers. The contents of C—O and C=O increase from 7.6% and 10.3% to 20.4% and 19.2%, respectively. The surface micro-cracks are uniform and dense. The interfacial shear strength between fiber and resin increases from 29.88 MPa to 46.13 MPa,and its enhancement rate is 54%. And the hydrophobic surface is improved to hydrophilic surface, the contact angle reduces from about 110° to below 55°.

Key words: polyimide fiber, oxygen plasma modification, surface chemical composition, surface morphology, interface adhesion, wettability

中图分类号: 

  • TS195.6

图1

不同时间氧等离子体改性后纤维强力的Weibull拟合图"

表1

氧等离子体改性纤维形状参数及力学性能"

改性时间/
min
λ 断裂强度/
GPa
初始弹性
模量/GPa
断裂伸长
率/%
未处理 13.07 0.93 9.26 15.43
2 9.08 0.91 9.25 14.94
4 9.79 0.88 8.46 15.92
6 16.44 0.83 8.42 14.86

图2

未处理及氧等离子体改性纤维的表面形态(×50 000)"

表2

氧等离子体改性纤维表面化学元素含量分析"

改性时间/
min
元素含量/% O与C
含量比
N与C
含量比
C O N
未处理 77.4 19.2 3.4 0.25 0.04
2 70.4 24.3 5.3 0.35 0.08
4 62.5 32.6 4.9 0.52 0.08
6 68.4 24.3 7.3 0.36 0.11

图3

未处理及不同时间氧等离子体改性后纤维的C1s分峰谱图"

表3

氧等离子体改性纤维表面官能基团含量分析"

改性时间/
min
官能基团含量/%
C—C C—N C—O C=O
未处理 46.3 35.8 7.6 10.3
2 38.0 28.6 21.6 11.8
4 31.5 28.9 20.4 19.2
6 38.9 28.0 17.0 16.1

表4

氧等离子体改性纤维的界面剪切强度计算结果"

改性时间/
min
Lc/
μm
τ/
MPa
剪切强度
增长率/%
未处理 276.41 29.88
2 231.70 40.96 37
4 196.02 46.13 54
6 185.32 38.53 29

图4

显微镜观察到的聚酰亚胺纤维上的液滴形状"

[1] HASEGAWA M, HORIE K. Photophysics, photochemistry, and optical properties of polyimides[J]. Progress in Polymer Science, 2001,26(2):259-335.
[2] 常晶菁, 牛鸿庆, 武德珍. 聚酰亚胺纤维的研究进展[J]. 高分子通报, 2017(3):19-27.
CHANG Jingjing, NIU Hongqing, WU Dezhen. Research progress of polyimide fibers[J]. Chinese Polymer Bulletin, 2017(3):19-27
[3] KANEDA T, KATSURA T, NAKAGAWA K, et al. High-strength-high-modulus polyimide fibers: II: spinning and properties of fibers[J]. Journal of Applied Polymer Science, 2010,32(1):3151-3176.
[4] 林芳兵, 蒋金华, 陈南梁, 等. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018,39(5):14-19.
LIN Fangbing, JIANG Jinhua, CHEN Nanliang, et al. High-performance polyimide fiber and its weavability[J]. Journal of Textile Research, 2018,39(5):14-19.
[5] TIAN Guofeng, CHEN Binbin, QI Shengli, et al. Enhanced surface free energy of polyimide fibers by alkali treatment and its interfacial adhesion behavior to epoxy resins[J]. Composite Interfaces, 2016,23(2):145-155.
[6] YUN H K, CHO K, KIM J K, et al. Adhesion improvement of epoxy resin/polyimide joints by amine treatment of polyimide surface[J]. Polymer, 1997,38(4):827-834.
[7] CHAN C M, KO T M, HIRAOKA H. Polymer surface modification by plasmas and photons[J]. Surface Science Reports, 1996,24(1):1-54.
[8] SUN Xuyang, BU Junfeng, LIU Weiwei, et al. Surface modification of polyimide fibers by oxygen plasma treatment and interfacial adhesion behavior of a polyimide fiber/epoxy composite[J]. Science & Engineering of Composite Materials, 2015,24(4):477-484.
[9] KELLY A, TYSON W R. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics & Physics of Solids, 1965,13(6):329-350.
[10] 张焕侠. 碳纤维表面和界面性能研究及评价[D]. 上海:东华大学, 2014: 27-29.
ZHANG Huanxia. Research and evaluation of carbon fiber surface and interface properties[D]. Shanghai: Donghua University, 2014: 27-29.
[11] SIMIONESCU C I, DENES F. Use of plasma chemistry in the field of synjournal and modification of the natural macromolecular compounds[J]. Cellulose Chemistry & Technology, 1980,14:285.
[12] 陈平, 陈辉. 先进聚合物基复合材料界面及纤维表面改性[M]. 北京: 科学出版社, 2010: 20-24.
CHEN Ping, CHEN Hui. Advanced Polymer Matrix Composite Interface and Fiber Surface Modifica-tion[M]. Beijing: Science Press, 2010: 20-24.
[13] JIA Caixia, CHEN Ping, LI Wei, et al. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science, 2011,257(9):4165-4170.
[14] 张承双. 氧气等离子体改性对PBO纤维表面及PBO/PPESK复合材料界面的影响[D]. 大连:大连理工大学, 2009: 14-16.
ZHANG Chengshuang. Effect of oxygen plasma modification on the surface properties of PBO fibers and interface properties of PBO/PPESK composites[D]. Dalian: Dalian University of Technology, 2009: 14-16.
[15] PARK J M, KIM D S, KIM S R. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J]. Journal of Colloid & Interface Science, 2003,264(2):431-445.
doi: 10.1016/S0021-9797(03)00419-3 pmid: 16256662
[16] 孙伟, 杨冰磊. 低温等离子体改善聚酰亚胺纤维亲水性研究[J]. 产业用纺织品, 2008,26(11):27-30.
SUN Wei, YANG Binglei. Study on low temperature plasma modification for surface hydrophilic of polyimide fiber[J]. Technical Textiles, 2008,26(11):27-30.
[17] 杨建忠, 杨冰磊. 利用低温等离子体处理实现聚酰亚胺纤维表面改性[J]. 西安工程大学学报, 2009,23(2):136-140.
YANG Jianzhong, YANG Binglei. Surface modification effect of polyimide fiber by low temperature plasma treatment[J]. Journal of Xi'an Polytechnic University, 2009,23(2):136-140.
[1] 林芳兵 蒋金华 陈南梁 杜晓冬 苏传丽. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018, 39(05): 14-19.
[2] 王春红 陈祯 李园平 YOUSFANI Sheraz Hussain Siddique 陈雅颂. 竹原纤维的分级提取及其性能[J]. 纺织学报, 2017, 38(11): 9-15.
[3] 杨莉 张艳艳 杨稳 苏瑞. 服用聚酰亚胺纤维织物的热学性能[J]. 纺织学报, 2017, 38(08): 62-67.
[4] 洪剑寒 潘志娟 李敏 姚穆. 氧气等离子体预处理对UHMWPE/PANI复合纤维导电性能的影响[J]. 纺织学报, 2013, 34(6): 1-7.
[5] 李颖 王鸿博 高卫东. 磁控溅射碳纤维基纳米铜薄膜的结构及其性能[J]. 纺织学报, 2012, 33(9): 10-14.
[6] 尹朝清, 徐园, 张清华. 聚酰亚胺纤维及其阻燃特性[J]. 纺织学报, 2012, 33(6): 116-120.
[7] 李文涛, 姚淑焕, 彭淑萍, 吴萌, 张超波, 张再兴. 改性聚芳噁二唑纤维的热氧老化性能[J]. 纺织学报, 2012, 33(6): 151-154.
[8] 李书干 焦晓宁. 聚酰亚胺针刺布与聚苯硫醚针刺布的热稳定性与燃烧性能对比[J]. 纺织学报, 2012, 33(12): 35-39.
[9] 王春莹;王潮霞. 常压介质阻挡放电对涤纶春亚纺织物的表面改性[J]. 纺织学报, 2010, 31(7): 97-101.
[10] 钱坤;曹海建;盛东晓;庄粟裕. 低温等离子体处理对芳纶界面性能的影响[J]. 纺织学报, 2010, 31(10): 10-13.
[11] 王萌;吴敏;葛明桥. 纳米SiO2对淀粉浆膜耐磨损性能的影响[J]. 纺织学报, 2006, 27(7): 67-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!