纺织学报 ›› 2019, Vol. 40 ›› Issue (09): 28-34.doi: 10.13475/j.fzxb.20180807707

• 纤维材料 • 上一篇    下一篇

嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能

张恒1, 甄琪2, 刘雍3(), 宋卫民4, 刘让同2, 张一风1   

  1. 1.中原工学院 纺织学院, 河南 郑州 451191
    2.中原工学院 服装学院, 河南 郑州 451191
    3.天津工业大学 纺织科学与工程学院, 天津 300387
    4.苏州多瑈新材料科技有限公司, 江苏 苏州 215600
  • 收稿日期:2018-08-31 修回日期:2019-03-12 出版日期:2019-09-15 发布日期:2019-09-23
  • 通讯作者: 刘雍
  • 作者简介:张恒(1986—),男,讲师,博士。主要研究方向为非织造复合材料的功能性结构设计及应用。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100);中国国家留学基金项目(201808410565);纺织服装产业河南省协同创新中心资助项目(2017CYY006);中原工学院青年人才创新能力基金项目(K2018QN011);中原工学院青年骨干教师培养计划项目(2018XQG04)

Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure

ZHANG Heng1, ZHEN Qi2, LIU Yong3(), SONG Weimin4, LIU Rangtong2, ZHANG Yifeng1   

  1. 1. School of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. School of Garment, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. School of Textile Science and Engineering,Tiangong University, Tianjin 300387, China
    4. Suzhou Doro New Material Technology Co., Ltd., Suzhou, Jiangsu 215600, China
  • Received:2018-08-31 Revised:2019-03-12 Online:2019-09-15 Published:2019-09-23
  • Contact: LIU Yong

摘要:

为开发可用于空气过滤的微纳米纤维材料,以聚乙二醇(PEG)共混改性聚丙烯(PP)为原料,基于熔喷技术高速热气流牵伸聚合物熔体一步法制备PEG/PP微纳米纤维材料,并对纤维排列、直径分布、孔隙率与过滤效率、过滤阻力和质量因子间的关系进行分析。结果表明:直径在800 nm以下的纳米纤维穿插于直径在4 000 nm以上的纤维之间,表现为厚度方向上的宏观叠层与水平方向上的微观准连续分支复合的嵌入式特征;随着PEG质量分数从0%增加到8%, 800 nm以下纤维的嵌入率从0.00%增加到784.66%,同时过滤效率增大了约1.12倍,质量因子也呈现逐渐增大的趋势;微纳米纤维材料的嵌入式结构有利于捕获连续流体中的细小颗粒物。

关键词: 非织造材料, 仿生结构, 嵌入式结构, 过滤性能, 聚丙烯, 聚乙二醇, 熔喷技术

Abstract:

In order to develop micro-nanofibers fibrous with efficient air filtration performance, the micro-nanofiber fibrous nonwovens were formed by one step method of high speed hot gas flow drafting based on melt blown technology with polyethylene glycol/polypropylene (PEG/PP) as the materials. The relationships between fiber arrangement, fineness distribution, porosity and filtration efficiency, filtration resistance and mass factor were analyzed experimentally. Results show that the fibers with diameter less than 800 nm are interspersed among fibers with diameter more than 4 000 nm, showing the embedded feature of the macro superposition in the direction of thickness and the micro quasi continuous branch in the horizontal direction. With the increasing of the PEG mass ratio from 0% to 8%, the fiber embedding rate of the fibers with diameter less than 800 nm increases from 0.00% to 784.66%. At the same time, the filtration efficiency increases by about 1.12 times and the mass factor shows a gradual increasing trend. It is shown that the embedded structure of the micro nanofiber material is beneficial to the capture of fine particles in the continuous fluid, which is helpful to improve capturing the fine particles in continuous fluids.

Key words: nonwoven, bionic structure, embedded structure, air filtration performance, polypropylene, polyethylene glycol, melt blown technology

中图分类号: 

  • TS167

图1

嵌入式PP/PEG微纳米纤维材料的熔喷成型原理"

表1

PP/PEG样品参数设定"

样品编号 PEG质量分数/% 接收距离/cm
1# 0 20
2# 5 20
3# 8 20
4# 10 20
5# 12 20
6# 15 20
7# 10 10
8# 10 15
9# 10 25
10# 10 30

图2

不同PEG质量分数的PP/PEG样品表面和截面电镜照片"

图3

PP/PEG嵌入率随PEG质量分数的变化"

图4

不同接收距离样品的表面形态电镜照片"

图5

PP/PEG孔隙率随接收距离的变化曲线"

图6

不同PEG质量分数和接收距离的PP/PEG样品过滤性能变化曲线"

表2

PP/PEG样品的特征参数"

样品编号 面密度/(g·m-2) 平均厚度/mm 孔隙率/%
1# 11.16 0.096 88.26
2# 11.42 0.107 88.29
3# 10.95 0.096 88.56
4# 10.07 0.102 88.52
5# 10.57 0.091 88.36
6# 10.40 0.102 88.88
7# 10.70 0.069 83.04
8# 10.37 0.089 86.12
9# 10.71 0.098 88.61
10# 11.08 0.102 89.11

图7

质量因子随PEG质量分数和接收距离的变化曲线"

[1] SOLTANI I, MACOSKO C W. Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens[J]. Polymer, 2018(145):21-30.
[2] YALCIN Y, GAJANAN S B. Porosity and barrier properties of polyethylene meltblown nonwovens[J]. The Journal of The Textile Institute, 2017,108(6):1035-1040.
[3] SHOU Dahua, FAN Jintu, ZHANG Heng, et al. Filtration efficiency of non-uniform fibrous filters[J]. Aerosol Science & Technology, 2015,49(10):912-919.
[4] 康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017,38(11):168-176.
KANG Weimin, FAN Lanlan, DENG Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017,38(11):168-176.
[5] 申莹, 邓炳耀, 刘庆生, 等. 不同填充密度的梯度结构复合滤材的制备及其性能[J]. 纺织学报, 2017,38(7):23-27.
SHEN Ying, DENG Bingyao, LIU Qingsheng, et al. Preparation and properties of gradient filter materials with different packing density[J]. Journal of Textile Research, 2017,38(7):23-27.
[6] ZHANG Heng, ZHEN Qi, LIU Yong, et al. One-step melt blowing process for PP/PEG micro-nanofiber filters with branch networks[J]. Results in Physics, 2019,12:1421-1428.
[7] 张恒, 甄琪, 王俊南, 等. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016,37(5):17-22.
ZHANG Heng, ZHEN Qi, WANG Junnan, et al. Structure and performance of high temperature resistant fibrous filters with gradient structure[J]. Journal of Textile Research, 2016,37(5):17-22.
[8] 钱晓明, 王一帆. 新型纳微纤维复合滤料的制备及性能[J]. 天津工业大学学报, 2018,37(1):13-18.
QIAN Xiaoming, WANG Yifan. Preparation and performance of a novel composite filter composed of micrometer as well as nanometer sized fibers[J]. Journal of Tianjin Polytechnic University, 2018,37(1):13-18.
[9] FAN J T, SARKAR M K, SZETO Y C, et al. Plant structured textile fabrics[J]. Materials Letters, 2007,61(2):561-565.
[10] CHEN Qing, FAN Jintu, MANAS Sarkar. Biomimetics of plant structure in knitted fabrics to improve the liquid water transport properties[J]. Textile Research Journal, 2010,80(6):568-576
[11] 张恒, 甄琪, 刘雍, 等. 仿生水平分支结构聚乙二醇/聚丙烯超细纤维材料的制备及其液体水平扩散性能[J]. 纺织学报, 2018,39(12):18-23.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2018,39(12):18-23.
[12] 张宇, 黄勇平, 周燕坤, 等. 苯乙烯与丙烯酸改性PP/PS共混物的相形态与动态力学性能[J]. 高分子材料科学与工程, 2006,22(6):95-98.
ZHANG Yu, HUANG Yongping, ZHOU Yankun, et al. Phase morphologies and dynamic mechanical properties of PP/PS blends modified by acrylic acid and styrene[J]. Polymer Materials Science & Engineering, 2006,22(6):95-98.
[13] DENG Nanping, HE Hongsheng, YAN Jing, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration[J]. Polymer, 2019(165):174-179.
[14] ZHANG Heng, QIAN Xiaoming, ZHEN Qi, et al. Research on structure characteristics and filtration performances of PET-PA6 hollow segmented-pie bicomponent spunbond nonwovens fibrillated by hydro-entangle method[J]. Journal of Industrial Textiles, 2015,45(1):48-65.
[15] UPPAL Rphit, BHAT Gajanan, EASH Chris, et al. Meltblown nanofiber media for enhanced quality factor[J]. Fibers and Polymers, 2013,14(4):660-668.
[16] SUN Guangwu, YANG Jingru, XIN Sanfa, et al. Influence of processing conditions on the basis weight uniformity of melt-blown fibrous webs: numerical and experimental study[J]. Industrial & Engineering Chemistry Research, 2018,57(29):9707-9715.
[17] XIN Sanfa, WANG Xinhou. Shear flow of molten polymer in melt blowing[J]. Polymer Engineering & Science, 2012,52(6):1325-1331.
[1] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28.
[2] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[3] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[4] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[5] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[6] 朱清, 徐丹丹, 潘园歌, 王成龙, 郑今欢. 水性聚丙烯酸酯对涂层商标织物图案打印效果的影响[J]. 纺织学报, 2020, 41(08): 55-62.
[7] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[8] 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196.
[9] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[10] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[11] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[12] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[13] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[14] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[15] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!