纺织学报 ›› 2019, Vol. 40 ›› Issue (09): 114-121.doi: 10.13475/j.fzxb.20180900108

• 染整与化学品 • 上一篇    下一篇

聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控

柳健1, 毛金露1, 彭丽1, 蔡凌云1, 郑旭明1(), 张富山2   

  1. 1.浙江理工大学 理学院, 浙江 杭州 310018
    2.福建恒安集团有限公司, 福建 泉州 362261
  • 收稿日期:2018-09-03 修回日期:2019-03-21 出版日期:2019-09-15 发布日期:2019-09-23
  • 通讯作者: 郑旭明
  • 作者简介:柳健(1992—),男,硕士生。主要研究方向为聚乙烯-聚丙烯纤维亲水油剂研发。

Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics

LIU Jian1, MAO Jinlu1, PENG Li1, CAI Lingyun1, ZHENG Xuming1(), ZHANG Fushan2   

  1. 1. College of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Fujian Hengan Group Co., Ltd., Quanzhou, Fujian 362261, China
  • Received:2018-09-03 Revised:2019-03-21 Online:2019-09-15 Published:2019-09-23
  • Contact: ZHENG Xuming

摘要:

针对亲水油剂研发过程中表面活性剂配伍与聚乙烯-聚丙烯(ES)非织造布亲水性关系的问题,借助稳态荧光猝灭法、视频接触角测定仪、液体穿透时间测定仪等,考察了油剂或表面活性剂的溶液表面张力、胶束聚集数、聚集体粒径分布、聚乙烯(PE)界面动态接触角等性能指标,探讨了表面活性剂结构和协同配伍与ES非织造布多次透水时间的关系,测试了亲水油剂的综合性能。结果表明:亲水油剂的高表面活性、较小的亲水疏水平衡值(HLB值)、较大的胶束聚集数以及有效成分与ES纤维间的强吸附力等均有利于提高ES非织造布亲水性;改性后ES非织造布3次透水时间均小于3 s,反湿量小于0.13 g,表面比电阻小于3.0×108 Ω·cm,已达到卫生用品覆面材料的要求。

关键词: 聚乙烯-聚丙烯非织造布, 亲水油剂, 表面张力, 动态接触角, 表面活性剂

Abstract:

In view of the relationship between the compatibility of surfactants and the hydrophilicity of polyethylene-polypropylene (ES) nonwoven fabrics in the development of hydrophilic oil agents, the experimental methods such as steady-state fluorescence quenching method, video contact angle measuring instrument and liquid penetration time measuring instrument were adopted to detect surface tension of the oil or surfactant solution, the number of micelles, the particle size distribution of the aggregates, the dynamic contact angle of the polyethylene (PE) interface. The surfactant structure and synergistic compatibility with the multiple permeable time of the ES nonwoven fabric were discussed, and the comprehensive properties of hydrophilic oil agents were measured. The results show that the high surface activity of the hydrophilic oil agent, the appropriate HLB value, and the large number of micelle aggregation are beneficial to improve the hydrophilicity of the ES nonwoven fabric. The permeable time of 3 times is shorter than 3 s, the moisture resistance is less than 0.13 g, and the surface specific resistance is less than 3.0×108 Ω·cm after ES nonwoven fabric is modified by oil agent, which satisfy the requirements of the covering materials used for sanitary products.

Key words: polyethylene-polypropylene nonwoven fabric, hydrophilic oil agent, surface tension, dynamic contact angle, surfactant

中图分类号: 

  • TS195.6

表1

单一表面活性剂25 ℃时的CMC值和γCMC"

表面活性剂 CMC/(mmol·L-1) γCMC/(mN·m-1)
快T 11.50 26.8
AES 13.00 35.7
23E2S 12.50 33.7
SLES 13.30 32.8
MES-30 8.50 32.1
SDS 19.70 34.7
MDS 18.90 31.2
13C-5EO-PK 0.25 27.6
12C-9EO-PK 0.42 30.1
E1305 0.10 27.0
E1005 0.18 26.6
AEO-9 0.05 31.3
Tween-60 0.03 42.5
三硅氧烷 0.12 19.6
DTAB 3.25 33.7
TTAB 1.55 31.4
CTAB 0.53 30.5

图1

质量浓度为5 g/L时不同类型表面活性剂在PE膜上接触角随时间的变化"

表2

单一表面活性剂整理后ES非织造布的多次亲水透水时间"

表面活性剂 上油
率/%
透水时间/s
t1 t2 t3 t4 t5
快T 0.40 0.79 1.46 4.72 4.66 5.71
23E2S 0.40 0.77 1.63 6.99 6.95 5.46
AES 0.38 0.96 1.91 6.42 6.93 6.47
MES-30 0.38 1.00 6.97 6.61 7.02 7.40
SLES 0.38 1.81 3.85 6.74 6.35 6.87
MDS 0.38 2.77 2.02 7.72 6.68 7.13
SDS 0.37 7.70 4.76 7.99 10.35 10.45
12C-9EO-PK 0.36 2.78 4.24 4.90 4.56 6.28
13C-5EO-PK 0.34 1.12 3.42 4.50 3.63 3.92
DTAB 0.38 1.21 6.3 5.78 6.19 5.17
TTAB 0.32 1.10 3.35 3.7 3.61 3.35
CTAB 0.36 1.04 3.44 2.78 3.33 3.66
三硅氧烷 0.40 1.77 3.63 6.99 6.95 5.46

表3

双组分表面活性剂改性后ES非织造布的多次亲水透水时间"

表面活性剂 上油
率/%
透水时间/s
t1 t2 t3 t4 t5
CTAB与快T 0.40 0.79 1.86 2.42 2.66 2.71
CTAB与23E2S 0.40 0.77 1.93 2.39 2.46 2.56
CTAB与SLES 0.38 0.81 1.85 2.74 2.35 2.87
CTAB与MDS 0.38 2.26 2.51 2.34 3.31 3.20
CTAB与SDS 0.37 0.9 1.82 2.02 1.89 1.99
CTAB与AES 0.38 0.96 1.91 6.42 6.93 6.47
CTAB 0.36 1.04 3.44 2.78 3.33 3.66

表4

油剂改性后ES非织造布的多次透水时间、反湿量和比电阻"

油剂 上油率/% 透水时间/s 反湿量/g 比电阻ρ/
(Ω·cm)
γCMC /
(mN·m-1)
t1 t2 t3 t4 t5
ZLG-1 0.37 0.75 1.65 2.46 3.23 3.66 0.11 2.91×108 26.5
ZLG-2 0.35 0.74 1.34 2.70 2.06 3.49 0.12 1.17×108 25.3
ZLG-3 0.34 0.69 1.45 1.59 2.43 2.89 0.12 1.58×108 22.7
ZLG-4 0.35 0.93 1.78 1.90 3.82 2.28 0.11 1.98×108 22.3
ZLG-5 0.35 0.81 1.66 1.76 2.00 2.65 0.11 1.99×108 22.1

图2

质量浓度为8 g/L时不同油剂在PE膜上的铺展行为"

图3

油剂ZLG-2在不同水溶液浓度下,芘的荧光强度ln(I0/I)随淬灭剂浓度CQ的变化"

表5

油剂ZLG-2在不同浓度下的胶束聚集数"

浓度/(mmol·L-1) 线性方程 a b R2 Nm
0.11(4 CMC) Nm=6.0C-0.1 6.0 -0.1 0.98 0.5
0.27(8 CMC) Nm=12.0C-0.2 12.0 -0.2 0.99 2.9
0.41(10 CMC) Nm=14.7C-0.1 14.7 -0.1 0.97 5.6
0.55(15 CMC) Nm=16.6C-0.1 16.6 -0.1 0.99 8.7
0.68(20 CMC) Nm=20.0C-0.2 20.0 -0.2 0.99 13.1

表6

胶束聚集数Nm与油剂总浓度C间的线性方程(C=4~15倍CMC)"

油剂 NmC线性方程 R2
ZLG-1 Nm=10.8C-1.4 0.966
ZLG-2 Nm=21.6C-2.5 0.969
ZLG-3 Nm=14.6C-1.3 0.890
ZLG-4 Nm=24.2C-18.4 0.989
ZLG-5 Nm=23.6C-10.5 0.990
2 Nm=13.3C-18.0 0.958

图4

质量浓度为8 g/L时不同油剂的粒径分布"

[1] 周晨, 徐熊耀, 靳向煜. ES纤维热风非织造布驻极性能初探[J]. 纺织学报, 2012,33(9):66-70.
ZHOU Chen, XU Xiongyao, JIN Xiangyu. Exploration of electret property of area bonded ES fiber fabric[J]. Journal of Textile Research, 2012,33(9):66-70.
[2] 刘慧慧, 王云仪. 纸尿裤服用性能测评研究进展[J]. 纺织学报, 2018,39(6):175-182.
LIU Huihui, WANG Yunyi. Progress in overall wearability evaluation of disposable diapers[J]. Journal of Textile Research, 2018,39(6):175-182.
[3] JIN Y, PU Q, FAN H. Synjournal of linear piperazine/polyether functional polysiloxane and its modification of surface properties on cotton fabrics.[J]. Acs Applied Materials & Interfaces, 2015,7(14):7552-7559.
doi: 10.1021/am5088743 pmid: 25812599
[4] FAN L, CHENG D, JIN X. Hydrophilic properties of PP/CHA nonwoven fabrics[J]. Journal of Fiber Bioengineering & Informatics, 2011,4(4):403-411.
[5] 吉鹏, 刘红飞, 王朝生. 仿棉共聚酯纤维的制备及其性能表征[J]. 纺织学报, 2015,36(2):19-24.
JI Peng, LIU Hongfei, WANG Chaosheng. Preparation and characterization of cotton-like poly(ethylene terephthalate) fibers[J]. Journal of Textile Research, 2015,36(2):19-24.
[6] PEGALAJAR-JURADO A, JOSLIN J M, HAWKER M J, et al. Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification[J]. ACS Applied Materials & Interfaces, 2014,6(15):12307-12320.
doi: 10.1021/am502003z pmid: 25026120
[7] YUAN H, WANG W, YANG D, et al. Hydrophilicity modification of aramid fiber using a linear shape plasma excited by nanosecond pulse[J]. Surface and Coatings Technology, 2018,344(21):614-620.
doi: 10.1016/j.surfcoat.2018.03.057
[8] 代国亮, 肖红, 施楣梧. 涤纶表面亲水改性研究进展及其发展方向[J]. 纺织学报, 2015,36(8):156-164.
DAI Guoliang, XIAO Hong, SHI Meiwu. Research progress and development direction of surface hydrophilic modification of polyester fiber[J]. Journal of Textile Research, 2015,36(8):156-164.
[9] KODAMA Y, BARSBAY M, GUVEN O. Poly(2-hydroxyethyl methacrylate) (PHEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fabric by γ-initiation: synjournal, characterization and benefits of RAFT mediation[J]. Radiation Physics & Chemistry, 2014,105:31-38.
[10] 魏发云, 张伟, 邹学书, 等. 等离子体诱导丙烯酸接枝改性聚丙烯熔喷非织造材料[J]. 纺织学报, 2017,38(9):109-114.
WEI Fayun, ZHANG Wei, ZOU Xueshu, et al. Grafted modification of polypropylene meit-blown nonwowen materials with acrylic acid induced by plasma[J]. Journal of Textile Research, 2017,38(9):109-114.
[11] 陈永邦, 黄成, 阎克路. 导湿排汗涤纶针织物的抗菌亲水整理[J]. 纺织学报, 2018,39(5):79-84.
CHEN Yongbang, HUANG Cheng, YAN Kelu. Antibacterial and hydrophilic finishing of moisture absorption and sweat transport polyester knitted fabric[J]. Journal of Textile Research, 2018,39(5):79-84.
[12] 代国亮, 肖红, 施楣梧. 涤纶表面亲水改性研究进展及其发展方向[J]. 纺织学报, 2015,36(8):156-164.
DAI Guoliang, XIAO Hong, SHI Meiwu. Research progress and development direction of surface hydrophilic modification of polyester fiber[J]. Journal of Textile Research, 2015,36(8):156-164.
[13] HUSMANN S, MUNZAR M, WARNCKE W. Use of a surfactant composition for the hydrophilic finishing of textile fibers and textile products manufactured therefrom: US, 20160281293 A1[P]. 2016-09-26.
[14] 江移. 婴儿纸尿裤用丙纶纺粘法无纺布亲水整理探讨[J]. 非织造布, 2011,19(4):9-13.
JIANG Yi. Discussion on hydrophilic finishing of poly-propylene woven spunbonded nonwoven fabric for baby diapers[J]. Nonwovens, 2011,19(4):9-13.
[15] 彭丽, 蔡凌云, 郑旭明. ES纺粘无纺布表面活性剂亲水整理[J]. 浙江理工大学学报(自然科学版), 2018,39(4):508-514.
PENG Li, CAI Linyun, ZHENG Xuming. Hydrophilic finishing of surfactant of ES spun-bonded non-woven fabric[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2018,39(4):508-514.
[16] 蔡凌云. ES无纺布无硅亲水整理剂研究[D]. 杭州:浙江理工大学, 2018: 1-60.
CAI Linyun. Study on silicon free hydrophilic finishing agent of ES nonwoven fabric[D]. Hongzhou: Zhejiang Sci-Tech University, 2018: 1-60.
[17] WANG C, CAO X L, GUO L L, et al. Effect of molecular structure of catanionic surfactant mixtures on their interfacial properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,509:601-612.
doi: 10.1016/j.colsurfa.2016.09.069
[18] FAUSER H, UHLIG M, MILLER R, et al. Surface adsorption of oppositely charged SDS:C12TAB mixtures and the relation to foam film formation and stability[J]. Journal of Physical Chemistry B, 2015,119(40):12877-12886.
doi: 10.1021/acs.jpcb.5b06231
[19] MATTHIAS A, LUTZ W, JORG S, et al. Studying the concentration dependence of the aggregation number of a micellar model system by SANS[J]. Soft Matter, 2015,11(21):4208-4217.
doi: 10.1039/c5sm00469a pmid: 25892401
[20] KOVALCHUK N M, BARTON A, TRYBALA A, et al. Mixtures of catanionic surfactants can be superspreaders: comparison with trisiloxane superspreader[J]. Journal of Colloid and Interface Science, 2015,459:250-256.
doi: 10.1016/j.jcis.2015.08.024 pmid: 26301836
[21] ARPAN M, SURAJIT B, SOUMEN G, et al. Physicochemistry of CTAB-SDS interacted catanionic micelle-vesicle forming system: an extended explorat-ion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,553:633-644.
doi: 10.1016/j.colsurfa.2018.05.099
[22] RUSSO KRAUSS I, IMPERATORE R, DE SANTIS A, et al. Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: high-value nano-vehicles from low-cost surfactants[J]. Journal of Colloid and Interface Science, 2017,501:112-122.
pmid: 28437699
[1] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/ 水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[2] 侯学妮, 陈国强, 邢铁玲. 活性墨水流体特性对喷射性能的影响[J]. 纺织学报, 2020, 41(03): 91-99.
[3] 方玮 徐岚. 漏斗式喷气静电纺聚乙烯吡咯烷酮纳米纤维膜的制备及其表征[J]. 纺织学报, 2018, 39(10): 7-11.
[4] 吴清涛 王北福 姜洪涛 聂立宏. 超声时间对聚偏氟乙烯/SiO2平板膜性能和结构的影响[J]. 纺织学报, 2016, 37(07): 28-33.
[5] 陈少瑜 张婉 王潮霞. 烷基胍开关控制循环涂料泡沫染色机制及性能[J]. 纺织学报, 2015, 36(02): 71-76.
[6] 袁久刚 文艺 王平 崔莉 王强 范雪荣. 表面活性剂对纤维素酶水洗性能的影响[J]. 纺织学报, 2014, 35(5): 78-0.
[7] 吴露 王祥荣. 高粱红色素在锦纶纤维上的染色动力学[J]. 纺织学报, 2014, 35(11): 79-0.
[8] 王专 徐松 胡万鹏 徐丽芳 谢亚杰. 表面活性剂对C.I.活性蓝221的增溶作用[J]. 纺织学报, 2013, 34(11): 82-0.
[9] 房宽峻 刘代明 蔡玉青. Gemini型阳离子表面活性剂与铜酞菁染料的相互作用[J]. 纺织学报, 2013, 34(1): 66-71.
[10] 张桂芳, 付少海, 田安丽, 张霞, 王潮霞. 添加剂/超细包覆分散染料液滴形成的影响因素[J]. 纺织学报, 2012, 33(6): 48-52.
[11] 张彩云 房宽峻 蔡玉青. 阳离子红X-GRL与聚合物乳液的相互作用[J]. 纺织学报, 2012, 33(10): 62-65.
[12] 余天石;郭欣欣;邱华;葛明桥. 利用废弃聚酯合成Gemini型表面活性剂[J]. 纺织学报, 2010, 31(4): 20-24.
[13] 夏 鑫;魏取福;李 静. 高分子量壳聚糖∕聚氧乙烯复合纳米纤维的制备[J]. 纺织学报, 2010, 31(3): 11-14.
[14] 张旋;余天石;葛明桥. 利用废弃聚酯制备Gemini表面活性剂中间体[J]. 纺织学报, 2009, 30(10): 15-18.
[15] 王永攀;熊杰;谢军军;宋叶萍;孙芳;刘冠峰. 非离子表面活性剂对壳聚糖静电纺丝的影响[J]. 纺织学报, 2009, 30(07): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!