纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 20-26.doi: 10.13475/j.fzxb.20180903107

• 纤维材料 •    下一篇

编织管增强型聚乳酸中空纤维膜结构及其性能

萧传敏1,2, 肖长发1,2(), 张泰2, 王新亚1,2   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.天津工业大学 省部级共建分离膜与膜过程国家重点实验室, 天津 300387
  • 收稿日期:2018-09-13 修回日期:2019-03-10 出版日期:2019-08-15 发布日期:2019-08-16
  • 通讯作者: 肖长发
  • 作者简介:萧传敏(1994—),女,硕士生。主要研究方向为聚乳酸微孔膜。
  • 基金资助:
    国家自然科学基金项目(51673149)

Structure and properties of braided tube reinforced polylactic acid hollow fiber membranes

XIAO Chuanmin1,2, XIAO Changfa1,2(), ZHANG Tai2, WANG Xinya1,2   

  1. 1. School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-09-13 Revised:2019-03-10 Online:2019-08-15 Published:2019-08-16
  • Contact: XIAO Changfa

摘要:

为制备兼具高强度、高分离精度的聚乳酸(PLA)中空纤维膜,采用同心圆复合纺丝技术,分别制备了PLA同质编织管与聚对苯二甲酸乙二醇酯(PET)异质编织管增强型PLA中空纤维膜。考察聚乙二醇(PEG)相对分子质量对PLA增强膜结构和性能的影响,并通过物理反冲洗、超声水浴振荡实验研究了同质、异质编织管表面分离层与增强体界面结合性能。结果表明:随PEG相对分子质量的增大,纤维膜的表面孔径逐渐减小,渗透通量先增大后减小,牛血清蛋白截留率先增大后保持稳定,添加PEG相对分子质量为10 000的增强膜的渗透通量最大且分离效果最佳;增强膜与同质编织管的界面结合性能明显优于异质的。

关键词: 聚乳酸, 聚乙二醇, 编织管增强体, 中空纤维膜, 界面结合

Abstract:

In order to prepare polylactic acid (PLA) hollow fiber membranes with high strength and high separation precision, homogenous and heterogeneous braided tube reinforced PLA hollow fiber membranes were prepared by concentric circular spinning technique. The influences of polyethylene glycol (PEG) molecular weight on the structure and properties of the homogenous reinforced membranes were investigated. Moreover, the influences of homogenous and heterogeneous braided tubes on the interfacial bonding properties were also studied by physically back washing and ultrasonically water bathing shaking.The results show that with the increase of the PEG molecular weight, the surface pores size of the membranes decreases. In addition, the permeate flux of the membranes increases firstly and then decreases, and the bovine serum albumin rejection ratio increases first and then stabilizes with the increase of the PEG molecular weight. It is also found that the interface adhesion between homogeneous braid tube and PLA hollow fiber membranes are better than the heterogeneous ones.

Key words: polylactic acid, polyethylene glycol, braided tube reinforcement, hollow fiber membrane, interfacial bonding

中图分类号: 

  • TQ028.8

图1

增强型PLA中空纤维膜纺丝流程"

表1

增强型PLA中空纤维膜组成"

试样
编号
PLA质量
分数/%
PEG相对
分子质量
PEG质量
分数/%
NMP质量
分数/%
编织管
种类
M0 18 82 PLA
M1 18 400 5 77 PLA
M2 18 2 000 5 77 PLA
M3 18 10 000 5 77 PLA
M4 18 20 000 5 77 PLA
M5 18 10 000 5 77 PET

图2

纯水通量仪装置示意图"

图3

PEG相对分子质量对铸膜液剪切黏度的影响"

图4

PEG相对分子质量对同质增强型PLA中空纤维膜结构的影响"

表2

增强型PLA中空纤维膜厚度和直径测试结果"

试样编号 内径 外径 分离层厚度
M0 0.81 2.026 0.118
M1 0.81 2.004 0.107
M2 0.81 1.986 0.098
M3 0.81 1.978 0.094
M4 0.81 1.970 0.090

图5

PEG相对分子质量对同质增强型PLA中空纤维膜孔隙率和水接触角的影响"

图6

PEG相对分子质量对同质增强型PLA中空纤维膜渗透通量和截留率的影响"

图7

同质增强型PLA中空纤维膜的应力-应变曲线"

图8

同质与异质增强型PLA中空纤维膜的横截面结构"

图9

超声波水浴振荡处理对同质与异质增强型PLA中空纤维膜孔径分布的影响"

图10

超声波水浴振荡处理对增强型PLA中空纤维膜纯水通量和截留率的影响"

[1] 徐德志, 相波, 邵建颖 , 等. 膜技术在工业废水处理中的应用研究进展[J]. 工业水处理, 2006,26(4):1-4.
XU Dezhi, XIANG Bo, SHAO Jianying , et al. Research progress in application of membrane technology in industrial wastewater treatment[J]. Industrial Water Treatment, 2006,26(4):1-4.
[2] GUPTA B, REVAGADE N, HILBORN J . Poly(lactic acid) fiber: an overview[J]. Progress in Polymer Science, 2007,32(4):455-482.
doi: 10.1016/j.progpolymsci.2007.01.005
[3] YUAN X, LI W, ZHU Z , et al. Thermo-responsive PVDF/PSMA composite membranes with micro/nanoscale hierarchical structures for oil/water emulsion separation[J]. Colloids & Surfaces A: Physico-chemical & Engineering Aspects, 2017,516:305-316.
[4] ZUO J, BONYADI S, CHUNG T S . Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation[J]. Journal of Membrane Science, 2016,497:239-247.
doi: 10.1016/j.memsci.2015.09.038
[5] MINBU H, OCHIAI A, KAWASE T , et al. Preparation of poly(L-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants[J]. Journal of Membrane Science, 2015,479:85-94.
doi: 10.1016/j.memsci.2015.01.021
[6] CHEN S, HE Z, XU G , et al. Fabrication and characterization of modified nanofibrous poly(L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility[J]. Journal of Biomaterials Science Polymer Edition, 2016,27(10):1058-1068.
doi: 10.1080/09205063.2016.1180830 pmid: 27095503
[7] CARFI P F, LA C V, BRUCATO V . Morphology and thermal properties of foams prepared via thermally induced phase separation based on polylactic acid blends[J]. Journal of Cellular Plastics, 2012,48(5):399-407.
doi: 10.1177/0021955X12452180
[8] FAN Z, XIAO C, LIU H , et al. Preparation and performance of homogeneous braid reinforced cellulose acetate hollow fiber membranes[J]. Cellulose, 2015,22(1):695-707.
doi: 10.1007/s10570-014-0466-1
[9] QUAN Q, XIAO C, LIU H , et al. Preparation and characterization of braided tube reinforced polyacrylonitrile hollow fiber membranes[J]. Journal of Applied Polymer Science, 2015,132(14):1-10.
[10] 刘海亮, 肖长发, 黄庆林 , 等. 增强型中空纤维多孔膜研究进展[J]. 纺织学报, 2015,36(9):154-161.
LIU Hailiang, XIAO Changfa, HUANG Qinglin , et al. Research progress of reinforced hollow fiber porous membranes[J]. Journal of Textile Research, 2015,36(9):154-161.
[11] FAN Z W, XIAO C F, LIU H L , et al. Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes[J]. Journal of Membrane Science, 2015,486:248-256.
doi: 10.1016/j.memsci.2015.03.066
[12] GAO A, LIU F, SHI H , et al. Controllable transition from finger-like pores to inter-connected pores of PLLA membranes[J]. Journal of Membrane Science, 2015,478:96-104.
doi: 10.1016/j.memsci.2015.01.004
[13] YOO S H, KIM J H, JHO J Y , et al. Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight[J]. Journal of Membrane Science, 2004,236(1):203-207.
doi: 10.1016/j.memsci.2004.02.017
[14] LIU H, XIAO C, HUANG Q , et al. Preparation and interface structure study on dual-layer polyvinyl chloride matrix reinforced hollow fiber membranes[J]. Journal of Membrane Science, 2014,472(15):210-221.
doi: 10.1016/j.memsci.2014.08.050
[15] CHAKRABARTY B, GHOSHAL A K, PURKAIT M K . Effect of molecular weight of PEG on membrane morphology and transport properties[J]. Journal of Membrane Science, 2008,309(1):209-221.
doi: 10.1016/j.memsci.2007.10.027
[16] 凡祖伟 . 编织管增强型醋酸纤维素中空纤维膜研究[D]. 天津: 天津工业大学, 2016: 31-49.
FAN Zuwei . Study on braided tube reinforced cellulose acetate hollow fiber membranes[D]. Tianjin: Tianjin Polytechnic University, 2016: 31-49.
[17] MORIYA A, MARUYAMA T, OHMUKAI Y , et al. Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods[J]. Journal of Membrane Science, 2009,342(1):307-312.
doi: 10.1016/j.memsci.2009.07.005
[18] 权全 . 增强型聚丙烯腈中空纤维膜结构设计与性能研究[D]. 天津:天津工业大学, 2016: 4-6.
QUAN Quan . Structural design and properties of reinforced polyacrylonitrile hollow fiber membrane[D]. Tianjin: Tianjin Polytechnic University, 2016: 4-6.
[19] MASSELIN I, CHASSERAY X, DURAND B L , et al. Effect of sonication on polymeric membranes[J]. Journal of Membrane Science, 2001,181(2):213-220.
doi: 10.1016/S0376-7388(00)00534-2
[1] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[2] 梅硕, 李金超, 卢士艳, 肖长发, 杨勇, 冯向伟. 高强度聚氯乙烯中空纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 16-20.
[3] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[4] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[5] 杜晓冬, 林芳兵, 蒋金华, 陈南梁, 刘燕平. 氧等离子体改性对聚酰亚胺纤维表面性能的影响[J]. 纺织学报, 2019, 40(09): 22-27.
[6] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
[7] 李娜娜, 鲁清晨, 尹巍巍, 肖长发. 冷却温度对聚偏氟乙烯/超高分子量聚乙烯共混中空纤维膜结构与性能的影响[J]. 纺织学报, 2019, 40(07): 8-12.
[8] 张恒, 申屠宝卿, 章伟, 张一风, 崔国士. 聚乙二醇/聚丙烯熔喷非织造材料的叶脉仿生结构及其保液性能[J]. 纺织学报, 2019, 40(05): 18-23.
[9] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[10] 董浩, 张丽平, 刘怡宁, 王乐军, 刘亚运, 付少海. 聚乳酸纤维原液着色用改性炭黑的制备及其性能[J]. 纺织学报, 2019, 40(05): 64-69.
[11] 孙辉, 张恒源, 咸玉龙, 周传凯, 于斌. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(04): 1-6.
[12] 李晓川 瞿芊芊 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019, 40(03): 8-12.
[13] 余娟娟, 刘淑强, 吴改红, 阴晓龙. 玄武岩织物增强聚乳酸复合材料的制备及其拉伸断裂性能[J]. 纺织学报, 2019, 40(02): 82-86.
[14] 武奇奇, 李敏, 刘怡宁, 王乐军, 张丽平, 付少海. 聚乳酸织物载体染色性能[J]. 纺织学报, 2019, 40(01): 79-83.
[15] 程博闻 高鲁 SARMAD Bushra 邓南平 康卫民. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(12): 139-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡觉亮. 基于贝叶斯方法的织物分类研究[J]. 纺织学报, 2004, 25(01): 48 -49 .
[2] 吉苏玉. 涤纶混纺织物弹性与褶裥性能试验[J]. 纺织学报, 1983, 4(10): 45 -46 .
[3] 黄晨;丽韩;兆芳;银地. 丝胶浸渍棉质非织造地膜的制备与表征[J]. 纺织学报, 2007, 28(11): 52 -55 .
[4] 许云辉;林红;陈宇岳. 选择性氧化棉纤维的聚集态结构[J]. 纺织学报, 2006, 27(11): 1 -5 .
[5] 杨锁廷;刘建中;姚金波;王晓红;杨声强. 拉伸改性羊毛性能的研究[J]. 纺织学报, 2002, 23(03): 32 -33 .
[6] 潘寿民. 台车弯纱轮啮合分析与工艺计算[J]. 纺织学报, 1986, 7(06): 34 -38 .
[7] 张森林. 电子提花龙头的设计和实现[J]. 纺织学报, 2001, 22(05): 25 -26 .
[8] 张健飞;邵改芹. 紫外线照射白腐菌对己内酰胺分解及聚酰胺6降解的影响[J]. 纺织学报, 2008, 29(1): 9 -13 .
[9] 郭红;夏正兴. 镀铝反辐射热材料隔热性能的研究[J]. 纺织学报, 1990, 11(07): 4 -7 .
[10] 徐穆卿. 积点法计算印染实物劳动生产率[J]. 纺织学报, 1982, 3(11): 52 -54 .