纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 102-109.doi: 10.13475/j.fzxb.20180906408

• 染整与化学品 • 上一篇    下一篇

石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能

易领, 张何(), 傅昕, 李雯   

  1. 湖南工程学院 材料与化工学院, 湖南 湘潭 411104
  • 收稿日期:2018-09-26 修回日期:2019-10-22 出版日期:2020-01-15 发布日期:2020-01-14
  • 通讯作者: 张何
  • 作者简介:易领(1990—),女,硕士生。主要研究方向为纺织化学与染整工程。
  • 基金资助:
    国家自然科学基金资助项目(21005067);湖南省自然科学基金资助项目(2019JJ40055);湖南省教育厅资助科研项目(17A044,16B060)

Preparation and far-infrared emission performance of graphene based zirconium/titanium composites modified cotton fabrics

YI Ling, ZHANG He(), FU Xin, LI Wen   

  1. College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2018-09-26 Revised:2019-10-22 Online:2020-01-15 Published:2020-01-14
  • Contact: ZHANG He

摘要:

为进一步提高石墨烯基纳米复合材料的远红外发射特性,通过一步水热法利用锆钛氧化物对氧化石墨烯进行纳米复合改性,制备了二氧化锆/二氧化钛/还原型氧化石墨烯(ZrO2/TiO2-rGO)纳米复合材料。以水溶性聚氨酯为黏合助剂将ZrO2/TiO2-rGO与纺织品相结合,制备出具有远红外发射性能的棉织物。借助扫描电子显微镜和傅里叶红外分析光谱对制备的ZrO2/TiO2-rGO复合材料表观形态和内部结构进行表征;通过远红外发射率和红外热成像技术表征了改性棉织物的远红外发射性能。结果表明:在温度为120 ℃,时间为4 h,氧化石墨烯、二氧化钛、氧氯化锆质量比为5∶3∶2的合成条件下整理棉织物时,其远红外发射率较未整理棉织物高出约2.5%;这种方法可有效减少石墨烯含量,且远红外发射性能优良。

关键词: 棉织物功能整理, 水热法, 氧化石墨烯, 锆钛氧化物, 复合材料, 水溶性聚氨酯, 远红外发射率

Abstract:

In order to further improve the far-infrared emission characteristics of graphene-based nanocomposites, zirconia/titania/reduced graphene oxide (ZrO2/TiO2-rGO) nanocomposites were prepared by one-step hydrothermal modification of graphene oxide with zirconia/titanium oxide. Cotton fabrics with far-infrared emissivity were prepared by combining ZrO2/TiO2-rGO with the textiles using water-soluble polyurethane as binder. The morphology and internal structure of ZrO2/TiO2-rGO composites were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy, and the far infrared emission properties of modified cotton fabrics were characterized by far infrared emissivity and infrared thermal imaging technology. The results show that at 120 ℃ for 4 reaction hours, the far-infrared emissivity of the treated cotton fabric was about 2.5% higher than that of the untreated cotton fabric when the mass ratio of graphene oxide,titanium dioxide,zirconium oxychloride was 5∶3∶2. This method could effectively reduce the content of graphene and provide good far-infrared emission performance with low cost.

Key words: functional finishing of cotton fabric, hydrothermal, graphene oxide, zirconium/titaniumoxide, composite, water soluble polyurethane, far infrared emission rate

中图分类号: 

  • TQ421.2

图1

ZrO2/TiO2-rGO复合材料制备原理图"

图2

氧化石墨烯SEM照片(×10 000)"

图3

氧化石墨烯红外光谱图"

图4

ZrO2/TiO2-rGO复合材料SEM照片(×10 000)"

图5

ZrO2/TiO2-rGO复合材料红外光谱图"

图6

不同条件下复合材料在水中分散情况"

表1

传统远红外纺织品远红外发射效果"

样品 有效成分 有效成分
用量/%
远红外
发射率/%
丙纶远红外纤维 电气石母粒 8 82
聚酯远红外纤维 TiO2-SiO2-Cr2O3 3 85
棉远红外织物 陶瓷粉 6 86
涤纶/丙纶/锦纶远红外织物 Fe2O3、BeO、SrO、SiO2、CaO、MnO2 8 87
后整理远红外织物 六环石 5 85

表2

ZrO2/TiO2-rGO复合材料改性棉织物的远红外发射率"

样品 远红外发射率/%
未水洗 水洗10次 水洗20次
未处理织物 86.8 86.5 86.5
水性聚氨酯整理织物 86.3 86.4 86.4
ZrO2整理织物 87.7 87.1 86.2
TiO2整理织物 87.2 87.0 86.3
复合材料改性织物(4:3:3) 87.6 87.8 87.5
复合材料改性织物(5:3:2) 89.3 89.5 89.2
复合材料改性织物(6:2:2) 89.0 88.9 88.9
复合材料改性织物(7:2:1) 88.5 88.6 88.3
复合材料改性织物(8:1:1) 88.0 88.2 88.0
GO整理织物 88.2 88.1 88.1

图7

未处理棉织物、改性棉织物红外热成像图"

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669.
doi: 10.1126/science.1102896 pmid: 15499015
[2] 叶星柯, 周乾隆, 万中全, 等. 柔性超级电容器电极材料与器件研究进展[J]. 化学通报, 2017,80(1):10-33.
YE Xingke, ZHOU Qianlong, WANG Zhongquan, et al. Research progress of electrode materials and devices for flexible supercapacitors[J]. Chemical Bulletin, 2017,80(1):10-33.
[3] FAN Z, LI S, YUAN F, et al. Fluorescent graphene quantum dots for biosensing and bioimaging[J]. Rsc Advances, 2015,5(25):19773-19789.
doi: 10.1039/C4RA17131D
[4] TSAI M L, TU W C, TANG L, et al. Efficiency enhancement of silicon heterojunction solar cells via photon management using graphene quantum dot as downconverters[J]. Nano Letters, 2015,16(1):309-313.
pmid: 26676025
[5] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010,39:228-240.
doi: 10.1039/b917103g pmid: 20023850
[6] LIU S, HE X, ZHU J, et al. Cu3P/RGO nanocomposite as a new anode for lithium-ion batteries[J]. Scientific Reports, 2016,6:35189.
doi: 10.1038/srep35189 pmid: 27725701
[7] 俱玉云. 氧化石墨烯, 碳量子点复合纳米材料在环境污染物催化降解, 生物样品检测方面的应用[D]. 兰州:兰州大学, 2015,42-59.
JU Yuyun. Applications of grapheme oxide, carbon quantum dots nanocomposites in catalytic degradation of environmental pollutants, biological sample testing[D]. Lanzhou: Lanzhou University, 2015:42-59.
[8] 曲丽君, 田明伟, 迟淑丽, 等. 部分石墨烯复合纤维与制品的研发[J]. 纺织学报, 2016,37(10):170-177.
QU Lijun, TIAN Mingwei, CHI Shuli, et al. Research and development of some graphene composite fibers and products[J]. Journal of Textile Research, 2016,37(10):170-177.
[9] 余改丽, 张弘楠, 张娇娇, 等. 高效低阻聚丙烯腈/石墨烯纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2017,38(2):26-33.
YU Gaili, ZHANG Hongnan, ZHANG Jiaojiao, et al. Preparation and antibacterial properties of polyacrylonitrile / graphene nanofiber membrane with high efficiency and low resistance[J]. Journal of Textile Research, 2017,38(2):26-33.
[10] HU X, TIAN M, QU L, et al. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties[J]. Carbon, 2015,95:625-633.
doi: 10.1016/j.carbon.2015.08.099
[11] 王宗花, 赵凯, 迟德玲, 等. 石墨烯功能化海藻纤维的制备方法:ZL102181961A[P]. 2011-09-14.
WANG Zonghua, ZHAO Kai, CHI Deling, et al. Preparation of graphene functionalized algal fibe: ZL102181961A[P]. 2011-09-14
[12] 梁翠, 郑敏. 远红外纳米纺织品的性能测试[J]. 纺织学报, 2013,34(9):49-52.
LIANG Cui, ZHENG Min. Study on performance of far-infrared nanometer textiles[J]. Journal of Textile Research, 2013,34(9):49-52.
[13] 吴素坤. 远红外纤维的研究进展[J]. 国外纺织技术, 2003(6):1-4.
WU Sukun. Research progress of far infrared fibers[J]. Textile Technology Overseas, 2003(6):1-4.
[14] HUMMERS JR W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of The American Chemical Society, 1958,80(6):1339-1339.
doi: 10.1021/ja01539a017
[15] 任小孟, 王源升, 何特. Hummers 法合成石墨烯的关键工艺及反应机理[J]. 材料工程, 2013 (1):1-5.
doi: 10.3969/j.issn.1005-5053.2013.1.001
REN Xiaomeng, WANG Yuansheng, HE Te. Key processes and mechanism for preparing graphene by Hummers method[J]. Journal of Materials Engineering, 2013 (1):1-5.
doi: 10.3969/j.issn.1005-5053.2013.1.001
[16] 傅玲, 刘洪波, 邹艳红, 等. Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J]. 炭素, 2005(4):10-14.
FU Ling, LIU Hongbo, ZOU Yanhong, et al. Technology research on oxidative degree of graphite oxide prepared by hummers method[J]. Carbon, 2005(4):10-14.
[17] 李永霞, 李芸. 石墨烯/二氧化钛复合材料的制备及其对亚甲基蓝的吸附性能研究[J]. 精细与专用化学品, 2017,25(9):53-56.
LI Yongxia, LI Yun. Preparation of graphene/titanium dioxide composites and its adsorption properties for methylene blue[J]. Fine and Specialty Chemicals, 2017,25(9):53-56.
[18] 吴海培, 高晓红, 方婧, 等. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018,39(12):78-83.
WU Haipei, GAO Xiaohong, FANG Jing, et al. Preparation of titanium dioxide/reduced graphene oxide composite and its photocatalytic degradation and decolorization performance[J]. Journal of Textile Research, 2018,39(12):78-83.
[19] 黄敬霞. Zr、Ti氧化物/石墨烯复合材料的制备与摩擦学性能研究[D]. 兰州: 兰州理工大学, 2016: 15-16.
HUANG Jingxia. Preparation and tribological properties of Zr/Ti oxide / graphite composites[D]. Lanzhou: Lanzhou University of Technology, 2016:15-16.
[20] LUO X, WANG X, BAO S, et al. Adsorption of phosphate in water using one-stepsynthesized zirconium-loaded reduced graphene oxide[J]. Scientific Reports, 2016,6:39108.
pmid: 27974747
[21] ZHOU Y, BAO Q, TANG L A L. et al. Hydrothermal dehydration for the ″green″ reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chemistry of Materials, 2009,21(13):2950-2956.
[22] WANG P, WANG J, WANG X, et al. One-step synjournal of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013,132:452-459.
[23] CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010,48(4):1146-1152.
[24] HUANG Q, GAO L. Immobilization of rutile TiO2 on multiwalled carbon nanotubes[J]. Journal of Materials Chemistry, 2003,13(7):1517-1519.
[25] ZHU J, CAO Y, HE J. Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene-TiO2 hybrid films[J]. Journal of Colloid and Interface Science, 2014,420:119-126.
doi: 10.1016/j.jcis.2014.01.015 pmid: 24559709
[26] TU W, ZHOU Y, LIU Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of Tio2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J]. Advanced Functional Materials, 2013,23(14):1743-1749.
[27] GOUMRI M, POILÂNE C, RUTERANA P, et al. Synjournal and characterization of nanocomposites films with graphene oxide and reduced graphene oxide nanosheets[J]. Chinese Journal of Physics, 2017,55(2):412-422.
[28] VILLAR-RODIL S, PAREDES J I, MARTÍNEZ-ALONSO A, et al. Preparation of graphene dispersions and graphene-polymer composites in organic media[J]. Journal of Materials Chemistry, 2009,19(22):3591-3593.
[29] 周康夫. 石墨烯基纳米复合材料的制备及功能化应用[D]. 上海:华东理工大学, 2012:10-15.
ZHOU Kangfu. Preparation and application of grapheme-based nanocomposites[D]. Shanghai:East China University of Science and Technology, 2012:10-15.
[30] 裘康. 电气石熔喷非织造布的研究与应用[D]. 天津:天津工业大学, 2006:47-48.
QIU Kang. Research and application of tourmaline melt-blown nonwovens[D]. Tianjin:Tianjin University of Technology, 2006:47-48.
[31] 王运红, 鹿学凤, 卢春华, 等. 远红外聚酯及纤维的开发[J]. 弹性体, 2006(5):43-46.
WANG Yunhong, LU Xuefeng, LU Chunhua, et al. Development of far infrared polyester and fiber[J]. Elastomer, 2006 ( 5):43-46.
[32] 俞春华, 乔鹏娟, 董文洪, 等. 含锗面料的负离子、远红外及抗菌性能测试[J]. 丝绸, 2017,54(12):17-20.
YU Chunhua, QIAO Pengjuan, DONG Wenhong, et al. Test of negative ion, far infrared and antibacterial properties of fabric containing germanium[J]. Journal of Silk, 2017,54(12):17-20.
[33] 叶民勤, 刘红, 李伟. 远红外磁性纤维及其生产方法:ZL101067225[P]. 2007-11-07.
YE Minqin, LIU Hong, LI Wei, Far-infrared agnetic fibers and their production methods: ZL101067225[P]. 2007-11-07.
[34] 孙志峰, 刘奎元, 王宗钢. 六环石添加剂及在织物整理工艺中的应用:ZL101328682[P]. 2008-12-24.
SUN Zhifeng, LIU Kuiyuan, WANG Zonggang, Hexacyclic stone additive and its application in fabric finishing process: ZL101328682 [P]. 2008-12-24.
[35] LI Y, WU D X, HU J Y, et al. Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007,300(1/2):140-144.
[1] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[2] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[3] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[4] 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189.
[5] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[6] 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173.
[7] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[10] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[11] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[12] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[13] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[14] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[15] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!