纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 120-126.doi: 10.13475/j.fzxb.20180907707

• 染整与化学品 • 上一篇    下一篇

氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性

高晶(), 张俊, 赵泽阳, 李婉迪, 王佳珺, 王璐   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2018-09-29 修回日期:2019-07-05 出版日期:2019-10-15 发布日期:2019-10-23
  • 作者简介:高晶(1978—),女,教授,博士。主要研究方向为功能纺织面料纳米改性与性能评价。E-mail: gao2001jing@dhu.edu.cn
  • 基金资助:
    国家卫生计生委重大疾病防治科技行动计划—创伤修复专项资助(2017ZX01001-S22)

Antibacterial durability and wearability of polyester/cotton fabric modified collaboratively by graphene oxide and TiO2/SiO2

GAO Jing(), ZHANG Jun, ZHAO Zeyang, LI Wandi, WANG Jiajun, WANG Lu   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-09-29 Revised:2019-07-05 Online:2019-10-15 Published:2019-10-23

摘要:

为解决单一TiO2改性涤/棉织物在可见光下光催化效率低、抗菌活性弱且不持久等问题,采用氧化石墨烯协同TiO2/SiO2掺杂复合改性涤/棉织物。利用场发射显微镜、明暗条件下的抗菌性实验、纺织品色牢度实验、拉伸断裂测试和弯曲性能测试等手段对复合改性前后织物的微观形貌、抗菌性及抗菌持久性、服用性能等进行分析评价。结果表明:在可见光下,TiO2/SiO2/氧化石墨烯复合改性织物表面纳米粒子涂覆均匀,抑菌率在99%以上,复合改性织物在15次水洗后其抑菌率仍保持为98.5%;虽然改性后织物的拉伸断裂性能、透气性能、手感等都有一定程度的损失,但损失影响不大。

关键词: TiO2, SiO2, 氧化石墨烯, 复合改性, 涤/棉织物, 抗菌性, 服用性

Abstract:

In order to solve the low photocatalytic efficiency, weak antibacterial activity and poor endurability of polyester/cotton fabrics modified by TiO2 under visible light, polyester/cotton fabrics were modified by the combination of graphene oxide(GO) and TiO2/SiO2. A field-emission microscope, antibacterial experiments in light and dark condition, color fastness of textiles, tensile fracture and flexural properties tests were adopted to analyze and evaluate micro-morphologies, antimicrobial properties and antibacterial durability, wearability of fabrics before and after the combined modification. The experimental results show that the nanoparticles dispersed uniformly and coated on the fabrics modified by GO and TiO2/SiO2 and the antibacterial rate of composite modified fabrics is over 99% under visible light. After 15 times of washing, the antibacterial rate of the composite modified fabrics is 98.5%. Meanwhile, the process has no significant negative effect on the tensile breaking properties, air permeability and hand feeling of the modified fabric.

Key words: TiO2, SiO2, graphene oxide, combinded modification, polyester/cotton fabric, antimicrobial property, wearability

中图分类号: 

  • TS195.6

图1

织物的FE-SEM照片"

图2

织物培养皿中细菌残余数 a-1—黑暗条件下空白织物;b-1—黑暗条件下TiO2改性织物;c-1—黑暗条件下TiO2/SiO2/GO复合改性织物;a-2—可见光条件下空白织物;b-2—可见光条件下TiO2改性织物; c-2—可见光条件下TiO2/SiO2/GO复合改性织物。"

图3

不同涂层织物培养皿中细菌残余 1—黑暗条件; 2—可见光条件。"

表1

TiO2/SiO2/GO复合改性织物洗涤后抗菌性能"

洗涤次数 对大肠埃希菌 对金黄色葡萄球菌
0 100.0 99.8
5 99.5 99.3
10 99.2 99.0
15 99.0 98.5

表2

光照前后织物的断裂强力与断裂伸长"

样品 光照前 可见光照射12 h
断裂
强力/
N
强力
CV
值/%
断裂
伸长/
mm
伸长
CV
值/%
断裂
强力/
N
强力
CV
值/%
断裂
伸长/
mm
伸长
CV
值/%
未改性织物 780.2 2.7 15.7 5.1 778.3 3.2 15.2 4.2
TiO2改性
织物
732.1 7.9 13.7 3.5 730.5 6.8 12.8 5.2
TiO2/SiO2/
GO改性
织物
745.2 5.8 15.0 3.2 738.2 6.5 13.5 3.4

表3

织物的弯曲性能"

样品 弯曲刚度 弯曲滞后矩
未改性织物 1.78±0.07 2.66±0.28
TiO2改性织物 1.95±0.10 2.59±0.18
TiO2/SiO2/GO
复合改性织物
1.86±0.04 1.80±0.04

表4

织物的表面特性"

样品 SMD/μm MIU MMD
未改性织物 3.315 ± 0.012 0.162 ± 0.004 0.010 ± 0.001
TiO2改性织物 3.638 ± 0.023 0.172 ± 0.008 0.012 ± 0.001
TiO2/SiO2/
GO改性织物
3.628 ± 0.015 0.176 ± 0.007 0.014 ± 0.002

图4

光照前后织物的白度"

[1] 罗敏. 纳米技术在纺织中的应用[J]. 化工新型材料, 2001,29(7):29-30.
LUO Min. Application of nano-technology in textile[J]. New Chemical Materials, 2001,29(7):29-30.
[2] 邓桦, 张纪梅, 李秀明, 等. 纳米二氧化钛多功能织物整理剂的制备与性能[J]. 纺织学报, 2006,27(3):92-94.
DENG Hua, ZHANG Jimei, LI Xiuming, et al. Man-ufacture and property of multi-functional nano-titanium dioxide finishing agents for fabric[J]. Journal of Textile Research, 2006,27(3):92-94.
doi: 10.1177/004051755702700202
[3] 么丹阳, 巫晓华, 毛雪峰, 等. 银纳米颗粒/二氧化钛/醋酸纤维素复合纤维的制备及其性能[J]. 纺织学报, 2016,37(4):15-20.
YAO Danyang, WU Xiaohua, MAO Xuefeng, et al. Preparation and characterization of silver nanopar- ticles/TiO2/cellulose acetate composite nanofibers[J]. Journal of Textile Research, 2016,37(4):15-20.
[4] 冯静, 杜英英, 邢彦军. 钨杂二氧化钛负载棉织物的微波法制备及光催化性能[J]. 纺织学报, 2014,35(7):88-93.
FENG Jing, DU Yingying, XING Yanjun. Microwave-assisted low temperature in-situ synjournal and coating of Tungsten-doped TiO2 onto cotton fabric and photocatalytic performance of coated fabric[J]. Journal of Textile Research, 2014,35(7):88-93.
doi: 10.1177/004051756503500114
[5] 吴海培, 高晓红, 方婧, 等. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018,39(12):78-83.
WU Haipei, GAO Xiaohong, FANG Jing, et al. Preparation and photocatalytic degradation decoloring of TiO2/reduced graphene oxide composites[J]. Journal of Textile Research, 2018,39(12):78-83.
doi: 10.1177/004051756903900112
[6] CHEN J R, QIU F X, XU W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials[J]. Applied Catalysis A: General, 2015,495:131-140.
doi: 10.1016/j.apcata.2015.02.013
[7] 谭奇. TiO2及其石墨烯基复合材料的制备与应用研究[D]. 长沙:湖南大学, 2017: 38.
TAN Qi. Study on the preparation and application of TiO2 and its graphene-based composite[D]. Changsha: Hunan University, 2017: 38.
[8] 贾佳. 纳米洋葱碳/二氧化钛/二氧化硅复合材料的制备及其光催化性能的研究[D]. 太原:太原理工大学, 2018: 34.
JIA Jia. Study on the preparation and photocatalytic properties of carbon nano onions/titanium dioxide/silicon dioxide nanocomposites[D]. Taiyuan:Taiyuan University of Technology, 2018: 34.
[9] PAKDEL E, DAOUD W A, SEYEDIN S. Tunable photocatalytic selectivity of TiO2/SiO2 nanocomposites: effect of silica and isolation approach[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,552:130-141.
doi: 10.1016/j.colsurfa.2018.04.070
[10] PANWAR K, JASSAL M, AGRAWAL A K. TiO2-SiO2 Janus particles for photocatalytic self-cleaning of cotton fabric[J]. Cellulose, 2018,25(4):2711-2720.
doi: 10.1007/s10570-018-1698-2
[11] LU Y, ZHANG X, CHU Y C, et al. Cu2O nanocrystals/TiO2 microspheres film on a rotating disk containing long-afterglow phosphor for enhanced round-the-clock photocatalysis[J]. Applied Catalysis B: Environmental, 2018,224:239-248.
doi: 10.1016/j.apcatb.2017.10.054
[12] RAMAMOORTHY V, KANNAN K, THIRIPURANTH AGAN S. MA photocatalytic degradation of textile rea- ctive dyes-a comparative study using nano silver decorated titania-silica composite photocatalysts[J]. Journal of Nanoscience and Nanotechnology, 2018,18(4):2921-2930.
doi: 10.1166/jnn.2018.14304 pmid: 29442975
[13] KHAN H, JIANG Z R, BERK D. Molybdenum doped graphene/TiO2 hybrid photocatalyst for UV/visible pho- tocatalytic applications[J]. Solar Energy, 2018,162:420-430.
doi: 10.1016/j.solener.2018.01.055
[14] KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nano-particles[J]. Journal of The Textile Institute, 2016,107(9):1122-1134.
doi: 10.1080/00405000.2015.1093311
[15] 李洋, 梁莹, 刘洋, 等. 二氧化钛-氧化石墨烯复合物去除水中有机污染物的性能研究[J]. 水资源与水工程学报, 2018,29(4):103-109.
LI Yang, LIANG Ying, LIU Yang, et al. Performance of TiO2-GO composites on removing organic pollutants in water[J]. Journal of Water Resources & Water Enginee-ring, 2018,29(4):103-109.
[16] 吴珂琦, 王旭东, 张亚. 纳米二氧化钛/氧化石墨烯的制备及对水中污染物的去除性能研究[J]. 化学世界, 2018,59(2):120-128.
WU Keqi, WANG Xudong, ZHANG Ya. Studies on preparation and elimination properties of TiO2/graphene oxide composites[J]. Chemical World, 2018,59(2):120-128.
[17] QI K H, CHEN X Q, LIU Y Y, et al. Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles[J]. Journal of Materials Chemistry, 2007,17(33):3504-3508.
doi: 10.1039/b702887c
[18] 张联盟, 黄学辉, 宋晓岚. 材料科学基础[M]. 2 版. 武汉: 武汉理工大学出版社, 2008: 57.
ZHANG Lianmeng, HUANG Xuehui, SONG Xiaolan. Fundamentals of Materials Science[M].2nd ed. Wuhan: Wuhan University of Technology Press, 2008: 57.
[1] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[2] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[3] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[4] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[5] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[6] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[7] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[8] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[9] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[10] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[11] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[12] 王森, 陈英. 纳米TiO2 稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[13] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[14] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[15] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!