纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 131-139.doi: 10.13475/j.fzxb.20181000409
庄帅1, 阳海1(), 安继斌2, 胡倩1, 张浩1, 贺贵添1, 易兵1
ZHUANG Shuai1, YANG Hai1(), AN Jibin2, HU Qian1, ZHANG Hao1, HE Guitian1, YI Bing1
摘要:
为探索酸性红37(AR37)在硫酸根自由基作用下的降解可行性,设计了短波紫外光(UVC)活化乙腈(ACN)和水中过二硫酸钾盐K2S2O8(PDS)体系,研究了UVC/PDS/(90%ACN+10%H2O)体系中不同PDS用量、底物浓度、反应温度和光照强度等因素对AR37降解动力学的影响,借助液质联用仪对该体系中AR37的降解中间产物进行鉴定,并对AR37降解途径进行推导。结果表明:AR37在UVC/PDS/(90%ACN+10%H2O)体系中具有较好的降解效果,反应60 min其去除率达到98%以上,降解速率为0.123 min-1;高温和光强增强有利于PDS产生硫酸根自由基,从而提高了AR37的降解效率;UVC/PDS/(90%ACN+10%H2O)体系中硫酸根自由基对AR37的降解占据主导作用,而AR37的初始降解途径主要包括单电子转移反应导致的脱磺酸基和偶氮键断裂,以及吸氢反应和取代反应导致的羟基化产物等。
中图分类号:
[1] |
GOMARASCHI M, OSSOLI A, POZZI S, et al. Enhanced decolorization of Orange G in a Fe(II)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine[J]. Chemical Engineering Journal, 2014,256(6):316-323.
doi: 10.1016/j.cej.2014.06.006 |
[2] | LIN H, ZHANG H, HOH L Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process[J]. Journal of Hazardous Materials, 2014,276(9):182-191. |
[3] |
LIU N, DING F, WENG C H, et al. Effective degradation of primary color direct azo dyes using Fe0 aggregates-activated persulfate process[J]. Journal of Environmental Management, 2018,206:565-576.
pmid: 29127929 |
[4] | 易兵, 胡倩, 杨辉琼, 等. 酸性红37光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018,39(6):81-88. |
YI Bing, HU Qian, YANG Huiqiong, et al. Photocatalytic degradation kinetics optimization of acid red 37 by reponse surface method and transformation mechanism[J]. Journal of Textile Research, 2018,39(6):81-88. | |
[5] |
VALERO-LUNA C, PALOMARES-SANCHEZ S A, RUIZ F. Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue[J]. Catalysis Today, 2016,266:110-119.
doi: 10.1016/j.cattod.2015.08.049 |
[6] | 欧阳磊, 丁耀彬, 朱丽华, 等. 钴掺杂铁酸铋活化过硫酸盐降解水中四溴双酚A的研究[J]. 环境科学, 2013,34(9):3507-3512. |
OUYANG Lei, DING Yaobin, ZHU Lihua, et al. Efficient degradation of tetrabromobisphenol A in water by co-doped BiFeO3[J]. Environmental Science, 2013,34(9):3507-3512. | |
[7] | TENG Y. Sulfate radical and its application in decontamination technologies[J]. Critical Reviews in Environmental Science & Technology, 2015,45(16):1756-1800. |
[8] |
AND G P A, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004,38(13):3705-3712.
pmid: 15296324 |
[9] |
GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011,45(21):9308-9314.
pmid: 21999357 |
[10] |
FURMAN O S. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010,44(16):6423-6428.
pmid: 20704244 |
[11] | 蒋梦迪, 张清越, 季跃飞, 等. 热活化过硫酸盐降解三氯生[J]. 环境科学, 2018,39(4):1661-1667. |
JIANG Mengdi, ZHANG Qingyue, JI Yuefei, et al. Degradation of Triclosan by heat activated persulfate oxidation[J]. Environmental Science, 2018,39(4):1661-1667. | |
[12] |
JOHNSON R L, TRATNYEK P G, JOHNSON R O. Persulfate persistence under thermal activation conditions[J]. Environmental Science & Technology, 2008,42(24):9350-9356.
pmid: 19174915 |
[13] | 陈家斌, 魏成耀, 房聪, 等. 碳纳米管活化过二硫酸盐降解偶氮染料酸性橙7[J]. 中国环境科学, 2016,36(12):3618-3624. |
CHEN Jiabin, WEI Chengyao, FANG Cong, et al. Decolorization of acid orange 7 by persulfate activated by carbon nanotube[J]. China Environmental Science, 2016,36(12):3618-3624. | |
[14] | KOLTHOFF I M, MILLER I K. The chemistry of persulfate: I: the kinetics and mechanism of the decomposition of the persulfate ion in aqueous mediuml[J]. Journal of The American Chemical Society, 1951,73(7):1-30. |
[15] |
ZALIBERA M, RAPA P, STASKO A, et al. Thermal generation of stable · SO 4 - spin trap adducts with super-hyperfine structure in their EPR spectra: an alternative EPR spin trapping assay for radical scavenging capacity determination in dimethylsulphoxide [J]. Free Radical Research, 2009,43(5):457-469.
pmid: 19353392 |
[16] |
DONADELLI J A, CARLOS L, ARQUES-SANZ A, et al. Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways[J]. Applied Catalysis B: Environmental, 2018,231:51-61.
doi: 10.1016/j.apcatb.2018.02.057 |
[17] | HOSSEINI H A, NEZHADALI A, DARROUDI M. Spectrophotometric study of complex formation between iodoquinol (IQ) and Co2+, Mn2+, Cd2+, Pb2+, and Zn2+ in DMF/MeOH binary mixed solvents[J]. Arabian Journal of Chemistry, 2017,10:293-296. |
[18] | YANG H, LIU H J, HU Z B, et al. Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species (ROSs) during photocatalytic process[J]. Chemical Engineering Journal, 2014,245(1):24-33. |
[19] | YANG H, MEI L Y, WANG P C, et al. Photocatalytic degradation of norfloxacin on different TiO2-X polymorphs under visible light in water[J]. RSC Advances, 2017,7(72):45721-45732. |
[20] |
YANG H, ZHOU S L, LIU H J, et al. Photocatalytic degradation of carbofuran in TiO2 aqueous solution:kinetics using design of experiments and mechanism by HPLC/MS/MS[J]. Journal of Environmental Sciences, 2013,25(8):1680-1686.
doi: 10.1016/S1001-0742(12)60217-4 |
[21] |
LUTZE H V, BREKENFELD J, NAUMOV S, et al. Radicals: new mechanistic aspects and economical considerations[J]. Water Research, 2017,129:509-519.
pmid: 29247911 |
[22] |
YANG Y, PIGNAGELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental Science & Technology, 2014,48(4):2344-2351.
pmid: 24479380 |
[23] |
ZHOU L, ZHENG W, JI Y F, et al. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system[J]. Journal of Hazardous Materials, 2013,263:422-430.
pmid: 24220194 |
[24] | YANG H, ZHUANG S, HU Q, et al, Competitive reactions of hydroxyl and sulfate radicals with sulfonamides in Fe2+/S2 O 8 2 - system: reaction kinetics, degradation mechanism and acute toxicity [J]. Chemical Engineering Journal, 2018,339:32-41. |
[25] | YANG H, ZHOU W C, YANG L P, et al. Flutriafol Degradation in Ag +/S2 O 8 2 - aqueous system: an experimental and theoretical investigation [J]. Environment Protection Engineering, 2018,44(2):57-72. |
[1] | 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14. |
[2] | 徐红云, 于存, 苏帮. 一色齿毛菌对直接大红4BS 染料的脱色[J]. 纺织学报, 2020, 41(04): 78-83. |
[3] | 孙慧萍 吕文洲. 膨润土负载锌-钴催化臭氧处理模拟染料废水[J]. 纺织学报, 2019, 40(03): 118-124. |
[4] | 李庆 樊增禄 张洛红 李勇 陈创勋. 锆-有机骨架对水中染料的高选择性可循环吸附[J]. 纺织学报, 2019, 40(02): 141-146. |
[5] | 魏亮 陈小光 黄波 唐丽娟 王玉. 偶氮染料废水厌氧生物脱色强化[J]. 纺织学报, 2018, 39(08): 83-87. |
[6] | 易兵 胡倩 杨辉琼 阳海 李良臣 区泽棠. 酸性红37光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018, 39(06): 81-88. |
[7] | 李庆 张莹 樊增禄 朱炜. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(02): 112-118. |
[8] | 冯倩倩 朱方龙 信群 陈萌. 膨胀型阻燃棉织物的热降解动力学[J]. 纺织学报, 2016, 37(12): 81-86. |
[9] | 徐万福 傅伟松 周乃锋 陈华祥 丁亚钢 . 分散染料自动连续化生产新工艺[J]. 纺织学报, 2016, 37(11): 80-85. |
[10] | 李志刚. 偶氮染料降解氧化产物苯胺的液相色谱/质谱联用法测定[J]. 纺织学报, 2015, 36(05): 69-73. |
[11] | 吴刚 王力君 张明誉 郭方龙 赵珊红. 涤纶中致癌芳香胺的加速溶剂萃取-UPLC-MS/MS快速测定[J]. 纺织学报, 2014, 35(7): 94-0. |
[12] | 何华玲 张健飞 于志财 路艳华 林杰. 阳离子淀粉-膨润土复合絮凝剂对活性染料的吸附[J]. 纺织学报, 2014, 35(7): 101-0. |
[13] | 兰慧芳 邹专勇 朱卫红 支佳雯 喻佳丽. 颗粒活性炭对模拟活性染料废水的吸附脱色效果[J]. 纺织学报, 2013, 34(5): 70-75. |
[14] | 赵雪婷 董永春 程博闻 康卫民. 铁改性聚丙烯腈纳微米纤维催化剂在偶氮染料降解中的应用[J]. 纺织学报, 2013, 34(10): 76-0. |
[15] | 杜亮 李子燕 宁平 杜谨宏 左奇丽 姜浩. 利用水生植物处理染料废水的研究进展[J]. 纺织学报, 2012, 33(11): 146-152. |
|