纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 127-133.doi: 10.13475/j.fzxb.20181000907

• 染整与化学品 • 上一篇    下一篇

复合相变微胶囊制备及其在棉织物上的应用

杨建1, 张国庆1, 刘国金2, 柯孝明2, 周岚1,3()   

  1. 1.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    2.浙江理工大学 浙江省纤维材料和加工技术研究重点实验室, 浙江 杭州 310018
    3.兴化市大地蓝绢纺有限公司, 江苏 泰州 225700
  • 收稿日期:2018-10-19 修回日期:2019-07-18 出版日期:2019-10-15 发布日期:2019-10-23
  • 通讯作者: 周岚
  • 作者简介:杨建(1994—),男,硕士生。主要研究方向为功能纺织品的开发及应用。
  • 基金资助:
    浙江省教育厅科研项目资助(Y201840211)

Preparation of composite phase change microcapsules and its application on cotton fabrics

YANG Jian1, ZHANG Guoqing1, LIU Guojin2, KE Xiaoming2, ZHOU Lan1,3()   

  1. 1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Large Land Blue Co., Ltd., Taizhou, Jiangsu 225700, China
  • Received:2018-10-19 Revised:2019-07-18 Online:2019-10-15 Published:2019-10-23
  • Contact: ZHOU Lan

摘要:

为获得低成本、高相变焓且相变温度适宜的蓄热调温纺织品,优选不同比例共混的硬脂酸和月桂酸作为相变芯材,以有机单体苯乙烯(St)和丙烯酸丁酯(BA)作为壁材,采用乳液聚合法制备硬脂酸-月桂酸/聚(苯乙烯-丙烯酸丁酯)相变微胶囊,并将微胶囊浸轧整理到棉织物上。研究结果表明:以质量比1∶9复配的硬脂酸-月桂酸作为相变芯材,熔融峰值相变温度为42.12 ℃,相变潜热为187.80 J/g;按芯壁比1∶1制备的微胶囊球形度良好,包覆率高达82.29%,熔融峰值相变温度为37.45 ℃,相变潜热为77.27 J/g,初始分解温度(150 ℃)比纯硬脂酸-月桂酸相变芯材提高了50 ℃左右,具有良好的热稳定性;浸轧整理后棉织物峰值相变温度为39.47 ℃,相变潜热为25.41 J/g,具有良好的蓄热调温功能。

关键词: 复合相变芯材, 微胶囊, 硬脂酸, 月桂酸, 蓄热调温, 棉织物

Abstract:

In order to obtain a heat storage temperature-regulating textile with low cost, high phase transformation and suitable phase transition temperature, stearic acid and lauric acid blended in different proportions were preferred as the phase change core material, and poly(styrene-butyl acrylate) was used as the wall material to prepare stearic acid-lauric acid/poly(styrene-butyl acrylate) phase change microcapsule by emulsion polymerization, and the stearic acid-lauric acid phase change microcapsules were treated on the cotton fabrics by padding process. The results show that the stearic acid-lauric acid with the mass ratio of 1∶9 is used as the phase change core material. The melting peak phase transition temperature is 42.12 ℃ and the latent heat of phase change is 187.80 J/g. The stearic acid-lauric acid/poly(styrene-butyl acrylate) phase change microcapsules prepared with the core/wall ratio of 1∶1 have good sphericity and the coverage rate is as high as 82.29%. The related melting peak phase transition temperature is 37.45 ℃, the latent heat of phase change is 77.27 J/g, and the initial decomposition temperature (150 ℃) is about 50 ℃ higher than the pure stearic acid-lauric acid phase change core material, having good thermal stability. After padding finishing, the peak phase transition temperature and the latent heat of phase change of the cotton fabric are 39.47 ℃ and 25.41 J/g, which has good heat storage and temperature regulation function.

Key words: composite phase change core material, microcapsule, stearic acid, lauric acid, heat storage and temperature regulation, cotton fabric

中图分类号: 

  • TS195.9

图1

不同比例共混的硬脂酸-月桂酸复合相变芯材的DSC曲线"

表1

不同比例共混的硬脂酸-月桂酸复合芯材的相变潜热和峰值温度"

硬脂酸与月桂酸质量比 相变潜热/(J·g-1) 峰值温度/℃
0∶10 187.21 47.95
1∶9 188.03 42.40
3∶7 175.47 42.63
5∶5 113.16 43.06
7∶3 80.97 41.24
9∶1 19.10/162.82 36.83/69.12
10∶0 218.15 72.32

图2

硬脂酸-月桂酸微胶囊的粒径分布曲线和FESEM图像"

图3

硬脂酸-月桂酸复合芯材、聚(苯乙烯-丙烯酸丁酯)壁材及相变微胶囊的DSC曲线 注:H为相变潜热;Tpeak为峰值温度。"

图4

硬脂酸-月桂酸复合芯材、聚(苯乙烯-丙烯酸丁酯)壁材及相变微胶囊的TG曲线"

图5

棉织物原样及经壁材和微胶囊整理棉织物的FESEM图像"

图6

棉织物原样及经聚(苯乙烯-丙烯酸丁酯)壁材和硬脂酸-月桂酸微胶囊浸轧整理棉织物的DSC曲线"

表2

棉织物原样及经聚(苯乙烯-丙烯酸丁酯)壁材和硬脂酸-月桂酸微胶囊浸轧整理棉织物的DSC数据"

样品编号 质量增加率/% 相变潜热/(J·g-1) 峰值温度/℃
a 0 0
b 17.48 0
c 32.17 25.41 39.47
d 26.23 19.58 38.96

图7

棉织物原样及经壁材和不同浓度微胶囊整理棉织物的热成像图"

[1] ZHOU D, ZHAO C Y, TIAN Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy, 2012,92(4):593-605.
doi: 10.1016/j.apenergy.2011.08.025
[2] 樊鹏飞. 复合芯材相变储能微胶囊的制备及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2010: 1-25.
FAN Pengfei. Preparation and properties of composite core material phase change energy storage micro-capsules[D]. Harbin: Harbin Institute of Technology, 2010: 1-25.
[3] ZHAO C Y, ZHANG G H. Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications[J]. Renewable & Sustainable Energy Reviews, 2011,15(8):3813-3832.
[4] SHARMA R K, GANESAN P, TYAGI V V, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J]. Energy Conversion & Management, 2015,95:193-228.
[5] 梁书恩. 纳米胶囊化相变材料的制备及应用研究[D]. 合肥:中国科学技术大学, 2016: 3-26.
LIANG Shuen. Preparation and application of nanoencapsulated phase change materials[D]. Hefei: University of Science and Technology of China, 2016: 3-26.
[6] 常龙娇, 卢立新, 丘晓琳. 脂肪酸定形相变材料的制备及性能表征[J]. 化工新型材料, 2017(4):76-78.
CHANG Longjiao, LU Lixin, QIU Xiaolin. Preparation and characterization of fatty acid shaped phase change materials[J]. Chemical Materials, 2017(4):76-78.
[7] 马琼, 王军, 张小英. 二元复合芯材相变微胶囊性能的影响因素[J]. 包装工程, 2016(19):44-49.
MA Qiong, WANG Jun, ZHANG Xiaoying. Influencing factors of phase change microcapsules in binary composite core materials[J]. Package Engineering, 2016(19):44-49.
[8] 马琼, 王军. 不同芯材比对相变微胶囊的制备和性能影响[J]. 包装工程, 2016(17):59-63.
MA Qiong, WANG Jun. Effect of different core materials on the preparation and properties of phase change microcapsules[J]. Packaging Engineering, 2016 (17):59-63.
[9] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Reviews, 2009,13(2):318-345.
[10] SU W, DARKWA J, KOKOGIANNAKIS G. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable & Sustainable Energy Reviews, 2015,48:373-391.
[11] 马艳红. 相变温度可调的储能微胶囊的制备及其性能研究[D]. 北京:清华大学, 2013: 1-16.
MA Yanhong. Preparation and properties of energy storage microcapsules with tunable phase transition temperature[D]. Beijing: Tsinghua University, 2013: 1-16.
[12] CAO F, YANG B. Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure[J]. Applied Energy, 2014,113(1):1512-1518.
doi: 10.1016/j.apenergy.2013.08.048
[13] KONUKLU Y, PAKSOY H O, UNAL M, et al. Microencapsulation of a fatty acid with Poly(melamine-urea-formaldehyde)[J]. Energy Conversion and Management, 2014,80:382-390
doi: 10.1016/j.enconman.2014.01.042
[14] 崔锦峰, 李淑慧, 张鹏中, 等. 聚苯乙烯基相变微胶囊储热复合材料的制备及性能研究[J]. 功能材料, 2016,47(1):1199-1202.
CUI Jinfeng, LI Shuhui, ZHANG Pengzhong, et al. Preparation and properties of polystyrene-based phase change microcapsule heat storage composites[J]. Functional Materials, 2016,47(1):1199-1202.
[15] 蓝月, 胡月, 王琰, 等. 界面聚合制备乙草胺微胶囊及其杂草控制效果和环境残留[J]. 中国农业科学, 2017,50(14):2739-2747.
LAN Yue, HU Yue, WANG Yan, et al. Preparation of acetochlor microcapsules and their weed control effects and environmental residues by interfacial polymeri-zation[J]. China Agricultural Sciences, 2017,50(14):2739-2747.
[16] 管羽, 张维, 刘金树. 甲基丙烯酸甲酯相变微胶囊的制备及表征[J]. 印染, 2018,44(3):21-25, 32.
GUAN Yu, ZHANG Wei, LIU Jinshu. Preparation and characterization of methyl methacrylate phase change microcapsules[J]. China Dyeing & Finishing, 2018,44(3):21-25, 32.
[17] KUZNIK F, VIRGONE J. Experimental assessment of a phase change material for wall building use[J]. Applied Energy, 2009,86(10):2038-2046.
doi: 10.1016/j.apenergy.2009.01.004
[18] WEI L, MA Y, TANG X, et al. Composition and characterization of thermoregulated fiber containing acrylic-based copolymer microencapsulated phase-change materials (MicroPCMs)[J]. Industrial & Engineering Chemistry Research, 2014,53(13):5413-5420.
[19] CHEN B, WANG X, ZENG R, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux[J]. Experimental Thermal & Fluid Science, 2008,32(8):1638-1646.
[20] 陆少锋, 申天伟, 宋庆文, 等. 环保型聚脲微胶囊相变材料在棉织物上的应用[J]. 棉纺织技术, 2017,45(8):69-72.
LU Shaofeng, SHEN Tianwei, SONG Qingwen, et al. Application of environmental protection polyurea microencapsulated phase change materials on cotton fabrics[J]. Cotton Textile Technology, 2017,45(8):69-72.
[21] 毛雷, 刘华, 王曙东. 相变微胶囊整理棉织物的结构与性能[J]. 纺织学报, 2011,32(10):93-97.
MAO Lei, LIU Hua, WANG Shudong. Structure and properties of phase change microcapsules for finishing cotton fabrics[J]. Journal of Textiles Research, 2011,32(10):93-97.
[1] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[2] 王亮, 马晓光, 李俊君, 杨州. 热敏变色微胶囊的变色色谱拓展及其应用[J]. 纺织学报, 2020, 41(09): 88-94.
[3] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[4] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[5] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[6] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[7] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[8] 王森, 陈英. 纳米TiO2 稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[9] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[10] 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196.
[11] 高思梦, 王鸿博, 杜金梅, 王文聪. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(02): 89-94.
[12] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[13] 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/ 石墨烯/ 棉织物复合电极的制及其电化学性能 [J]. 纺织学报, 2020, 41(01): 96-101.
[14] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[15] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!