纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20181004508
• 纤维材料 • 下一篇
张娇1,2, 高雪峰1,2, 王玉周1,2, 刘海辉1,2,3, 张兴祥1,2,3()
ZHANG Jiao1,2, GAO Xuefeng1,2, WANG Yuzhou1,2, LIU Haihui1,2,3, ZHANG Xingxiang1,2,3()
摘要:
为提高聚酰胺66(PA66)纤维的力学性能,将羧基化碳纳米管(CMWNTs)与乙二胺(EA)进行功能化反应得到氨基化碳纳米管(AMWNTs),再将AMWNTs与PA66盐原位聚合制备AMWNTs掺杂PA66材料(PACNTs),并通过熔融纺丝制备成纤维。采用热重分析仪、差示扫描量热仪、X射线衍射仪及单纤维强力仪等对PA66和PACNTs纤维进行结构和性能表征。结果表明:PACNTs纤维的熔点随着AMWNTs的加入向低温方向移动,AMWNTs的加入使PA66分子质量下降,PACNTs纤维的结晶温度向高温方向移动,AMWNTs起到异相成核作用;随着AMWNTs的加入,PACNTs纤维的拉伸强度和弹性模量增加,当AMWNTs质量分数为0.5%时,PACNTs纤维的拉伸强度和弹性模量达到最大,比纯PA66纤维分别提高了约157%和455%。
中图分类号:
[1] | ZHOU Longfei, LIU Haihui, ZHANG Xingxiang. Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers[J]. Journal of Materials Science, 2015,50(7):2797-2805. |
[2] |
FAGHIHI Morteza, SHOJAEI Akbar, BAGHERI Reza. Characterization of polyamide 6/carbon nanotube composites prepared by melt mixing-effect of matrix molecular weight and structure[J]. Composites Part B: Engineering, 2015,78:50-64.
doi: 10.1016/j.compositesb.2015.03.049 |
[3] | NEVES J C, DECASSTRO V G, ASSIS A L S, et al. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation[J]. Applied Surface Science, 2018,436:495-504. |
[4] |
AJAYAN P M, SCHADLER L S, GIANNARIS C, et al. Single-walled carbon nanotube-polymer composites: strength and weakness[J]. Advanced Materials, 2000,12(10):750-753.
doi: 10.1002/(ISSN)1521-4095 |
[5] | GROMOV A, ITTMER S, SVENSSON J J, et al. Covalent amino-functionalisation of single-wall carbon nanotubes[J]. Journal of Materials Chemistry, 2005,15(32):3334. |
[6] |
TASIS Dimitrios, TAGMATARCHIS Nikos, BIANCO Alberto, et al. Chemistry of carbon nanotubes[J]. Chemical Reviews, 2006,106(3):1105-1136.
doi: 10.1021/cr050569o pmid: 16522018 |
[7] |
PELECH Iwona, KWIATKOWSKA Magdalena, JEDRZEJEWSKA Annae, et al. Thermal and mechanical properties of polyamide 12/modified carbon nanotubes composites prepared via the in situ ring-opening polymerization[J]. Polimery, 2017,62:101-108.
doi: 10.14314/polimery |
[8] |
CHEN Xianhong, WANG Jianfeng, LIN Ming, et al. Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes[J]. Materials Science and Engineering A, 2008,492(1-2):236-242.
doi: 10.1016/j.msea.2008.04.044 |
[9] | MENG H, SUI G X, FANG P F, et al. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6[J]. Polymer, 2008,49(2):610-620. |
[10] | SAITO T, MATSUSHIGE K, TANAKA K. Chemical treatment and modification of multi-walled carbon nanotubes[J]. Physica B: Condensed Matter, 2002,323(1-4):280-283. |
[11] | RAMANATHAN T, FISHER F T, RUOFF S R, et al. Amino-functionalized carbon nanotubes for binding to polymers and biological systems[J]. Chemistry of Materials, 205, 17(6):1290-1295. |
[12] | JR Hoeard Starkweather, JONES Glover A. Crystalline transitions in powders of nylon 66 crystallized from solution[J]. Journal of Polymer Science: Polymer Chemistry, 1981,19(3):467-477. |
[13] | HANSEN Charlesm. Hansen Solubility Parameters: A User's Handbook[M]. 2nd ed. New York: CRC Press, 2007: 289-303. |
[14] |
XIAO Linhong, XU Linli, YANG Yuying, et al. Core-ahell atructured polyamide 66 nanofibers with enhanced flame retardancy[J]. ACS Omega, 2017,2(6):2665-2671.
pmid: 31457608 |
[15] | ZHOU Longfei, LIU Haihui, ZHANG Xingxiang. Poly(styrene-maleic anhydride) functionalized graphene oxide[J]. Journal of Applied Polymer Science, 2015,132(22):41987. |
[16] | NAVIDFAR Amir, SANCAK Alkan, YILDIRIM Kemal Baran, et al. A Study on polyurethane hybrid nanocomposite foams reinforced with multiwalled carbon nanotubes and silica nanoparticles[J]. Polymer: Plastics Technology and Engineering, 2017(12):1-11. |
[17] | LIU Haihui, HOU Lichen, PENG Weiwei, et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber[J]. Journal of Materials Science, 2012,47(23):8052-8060. |
[18] |
RATHI Sudesh, DAHIYA J B. Polyamide 66/nanoclay composites: synjournal, thermal and flammability properties[J]. Advanced Materials Letters, 2012,3(5):381-387.
doi: 10.5185/amlett |
[19] | ZHANG Xiang, LI Yubao, LV Guoyu, et al. Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites[J]. Polymer Degradation and Stability, 2006,91(5):1202-1207. |
[20] | BELL J P, SLADE P E, DUMBLETON J H. Multiple melting in nylon 66[J]. Journal of Polymer Science: Polymer Physics, 1968,6(10):1773-1781. |
[21] | XU Zhen, GAO Chao. In situ polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules, 2010,43(16):6716-6723. |
[22] |
ZHANG Xingxiang, MENG Qingjie, WANG Xuechen, et al. Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites[J]. Journal of Materials Science, 2010,46(4):923-930.
doi: 10.1007/s10853-010-4836-2 |
[23] | LI Yuanyuan, LIU Ke, XIAO Ru. Preparation and characterization of flame-retarded polyamide 66 with melamine cyanurate by in situ polymerization[J]. Macromolecular Research, 2017,25(8):779-785. |
[24] | ZHANG Guosheng, YAN Deyue. Crystallization kinetics and melting behavior of nylon 10,10 in nylon 10,10-montmorillonite nanocomposites[J]. Journal of Applied Polymer Science, 2003,88(9):2181-2188. |
[25] | 李晓川, 瞿芊芊, 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019,40(3):8-12. |
LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spunning[J]. Journal of Textile Research, 2019,40(3):8-12. | |
[26] | 黄廷健, 牟浩, 阳知乾, 等. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018,39(10):1-6. |
HUANG Tingjian, MOU Hao, YANG Zhiqian, et al. Preparation and properties of high strength and high modulus polyformaldehyde fibers[J]. Journal of Textile Research, 2018,39(10):1-6. | |
[27] | LIU Xiaohui, WU Qiuju, BERGLUND Lars A. Polymorphism in polyamide 66/clay nanocomposites[J]. Polymer, 2002,43(18):4967-4972. |
[1] | 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19. |
[2] | 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33. |
[3] | 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/ 磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13. |
[4] | 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177. |
[5] | 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28. |
[6] | 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190. |
[7] | 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[8] | 胡文, 王迪, 陈晓川, 汪军, 李勇. 锯齿轧花中含棉籽棉朵模型的构建与仿真[J]. 纺织学报, 2020, 41(09): 27-32. |
[9] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[10] | 梅硕, 李金超, 卢士艳, 肖长发, 杨勇, 冯向伟. 高强度聚氯乙烯中空纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 16-20. |
[11] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[12] | 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15. |
[13] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[14] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[15] | 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26. |
|