纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20181004508

• 纤维材料 •    下一篇

聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能

张娇1,2, 高雪峰1,2, 王玉周1,2, 刘海辉1,2,3, 张兴祥1,2,3()   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.天津工业大学 先进纤维材料与储能技术天津市重点实验室, 天津 300387
    3.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
  • 收稿日期:2018-10-25 修回日期:2019-08-24 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 张兴祥
  • 作者简介:张娇 (1992—),女,博士生。主要研究方向为聚酰胺/碳纳米材料复合纤维的制备。
  • 基金资助:
    国家重点基础材料研发计划资助项目(2016YFB0303000);天津市新材料重大专项(16ZXCLGX00090)

Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers

ZHANG Jiao1,2, GAO Xuefeng1,2, WANG Yuzhou1,2, LIU Haihui1,2,3, ZHANG Xingxiang1,2,3()   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tiangong University, Tianjin 300387, China
    3. Key Laboratory of Advanced Textile Composites of Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2018-10-25 Revised:2019-08-24 Online:2019-11-15 Published:2019-11-26
  • Contact: ZHANG Xingxiang

摘要:

为提高聚酰胺66(PA66)纤维的力学性能,将羧基化碳纳米管(CMWNTs)与乙二胺(EA)进行功能化反应得到氨基化碳纳米管(AMWNTs),再将AMWNTs与PA66盐原位聚合制备AMWNTs掺杂PA66材料(PACNTs),并通过熔融纺丝制备成纤维。采用热重分析仪、差示扫描量热仪、X射线衍射仪及单纤维强力仪等对PA66和PACNTs纤维进行结构和性能表征。结果表明:PACNTs纤维的熔点随着AMWNTs的加入向低温方向移动,AMWNTs的加入使PA66分子质量下降,PACNTs纤维的结晶温度向高温方向移动,AMWNTs起到异相成核作用;随着AMWNTs的加入,PACNTs纤维的拉伸强度和弹性模量增加,当AMWNTs质量分数为0.5%时,PACNTs纤维的拉伸强度和弹性模量达到最大,比纯PA66纤维分别提高了约157%和455%。

关键词: 多壁碳纳米管, 聚酰胺66, 原位聚合, 纤维, 力学性能

Abstract:

In order to improve the mechanical properties of polyamide 66 (PA66) fiber, carboxylated multi-walled carbon nanotubes (CMWNTs) were condensed with ethylenediamine (EA) to obtain amino-functionalized multi-walled carbon nanotubes (AMWNTs), and AMWNTs doped PA66 composites (PACNTs) were prepared by in-situ polymerizing AMWNTs with polyamide 66 salt. Furthermore, the composites were melt-spun into fibers. The fibers were characterized using thermogravimetry, differential scanning calorimeter, X-ray diffraction and single fiber strength tester. The results show that, the melting temperature of the PACNTs fiber moves toward the low temperature direction as the content of AMWNTs increases, the addition of AMWNTs lowers the molecular weight of PA66, and the crystallization temperature of the PACNTs fiber moves toward the high temperature direction as a result of AMWNTs acting as a heterogeneous nucleation agent. The tensile strength and elastic modulus of the PACNTs fiber increase with increasing the content of AMWNTs. The tensile strength and elastic modulus of PACNTs fiber reach the maximum when the mass fraction of AMWNTs is 0.5%, which increase by approximately 157% and 455% as compared with those of PA66, respectively.

Key words: multi-walled carbon nanotube, polyamide 66, in-situ polymerization, fiber, mechanical property

中图分类号: 

  • TQ342.12

图1

CMWNTs和AMWNTs的红外光谱图"

图2

CMWNTs和AMWNTs的拉曼光谱图"

图3

CMWNTs和AMWNTs的XPS全谱图"

图4

CMWNTs和AMWNTs的C1s谱图"

表1

AMWNTs各种溶剂的溶解度参数"

溶剂 δd δp δh δ
DMF 17.4 13.7 11.3 26.6
DMSO 18.4 16.4 10.2 26.7
DMAc 16.8 11.5 10.2 22.8
THF 16.8 5.7 8.0 19.4
Ethanol 15.8 8.8 19.4 26.5
NMP 16.8 12.3 7.2 22.9
FA 14.3 11.9 16.6 24.9
EAC 15.8 5.3 7.2 17.9
DMK 15.5 10.4 7.0 19.9

图5

PA66和不同质量分数AMWNTs的PACNTs纤维的TGA曲线"

图6

PA66和不同质量分数AMWNTs的PACNTs纤维的DSC曲线"

图7

不同AMWNTs质量分数时PAA的TGA曲线"

表2

PA66和不同AMWNTs质量分数时游离PA66的黏均分子质量"

AMWNTs质量分数/% 相对黏度 Mη/(g·mol-1)
PA66 2.78 1.84×104
0.1 2.56 1.54×104
0.3 2.52 1.48×104
0.5 2.42 1.34×104
1.0 2.24 1.08×104

表3

PA66和PACNTs纤维的结晶参数"

AMWNTs质量
分数/%
Tm/℃ Tc/℃ ΔHc/(J·g-1) Xc/%
PA66 269.2 220.6 59.70 31.76
0.1 260.4 229.8 76.64 40.77
0.3 261.1 230.3 76.94 40.93
0.5 259.6 230.0 86.85 46.20
1.0 257.0 227.6 61.48 32.70

图8

PA66和不同质量分数AMWNTs的PACNTs纤维的XRD曲线"

图9

不同质量分数AMWNTs的PACNTs纤维的拉伸强度和弹性模量"

[1] ZHOU Longfei, LIU Haihui, ZHANG Xingxiang. Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers[J]. Journal of Materials Science, 2015,50(7):2797-2805.
[2] FAGHIHI Morteza, SHOJAEI Akbar, BAGHERI Reza. Characterization of polyamide 6/carbon nanotube composites prepared by melt mixing-effect of matrix molecular weight and structure[J]. Composites Part B: Engineering, 2015,78:50-64.
doi: 10.1016/j.compositesb.2015.03.049
[3] NEVES J C, DECASSTRO V G, ASSIS A L S, et al. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation[J]. Applied Surface Science, 2018,436:495-504.
[4] AJAYAN P M, SCHADLER L S, GIANNARIS C, et al. Single-walled carbon nanotube-polymer composites: strength and weakness[J]. Advanced Materials, 2000,12(10):750-753.
doi: 10.1002/(ISSN)1521-4095
[5] GROMOV A, ITTMER S, SVENSSON J J, et al. Covalent amino-functionalisation of single-wall carbon nanotubes[J]. Journal of Materials Chemistry, 2005,15(32):3334.
[6] TASIS Dimitrios, TAGMATARCHIS Nikos, BIANCO Alberto, et al. Chemistry of carbon nanotubes[J]. Chemical Reviews, 2006,106(3):1105-1136.
doi: 10.1021/cr050569o pmid: 16522018
[7] PELECH Iwona, KWIATKOWSKA Magdalena, JEDRZEJEWSKA Annae, et al. Thermal and mechanical properties of polyamide 12/modified carbon nanotubes composites prepared via the in situ ring-opening polymerization[J]. Polimery, 2017,62:101-108.
doi: 10.14314/polimery
[8] CHEN Xianhong, WANG Jianfeng, LIN Ming, et al. Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes[J]. Materials Science and Engineering A, 2008,492(1-2):236-242.
doi: 10.1016/j.msea.2008.04.044
[9] MENG H, SUI G X, FANG P F, et al. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6[J]. Polymer, 2008,49(2):610-620.
[10] SAITO T, MATSUSHIGE K, TANAKA K. Chemical treatment and modification of multi-walled carbon nanotubes[J]. Physica B: Condensed Matter, 2002,323(1-4):280-283.
[11] RAMANATHAN T, FISHER F T, RUOFF S R, et al. Amino-functionalized carbon nanotubes for binding to polymers and biological systems[J]. Chemistry of Materials, 205, 17(6):1290-1295.
[12] JR Hoeard Starkweather, JONES Glover A. Crystalline transitions in powders of nylon 66 crystallized from solution[J]. Journal of Polymer Science: Polymer Chemistry, 1981,19(3):467-477.
[13] HANSEN Charlesm. Hansen Solubility Parameters: A User's Handbook[M]. 2nd ed. New York: CRC Press, 2007: 289-303.
[14] XIAO Linhong, XU Linli, YANG Yuying, et al. Core-ahell atructured polyamide 66 nanofibers with enhanced flame retardancy[J]. ACS Omega, 2017,2(6):2665-2671.
pmid: 31457608
[15] ZHOU Longfei, LIU Haihui, ZHANG Xingxiang. Poly(styrene-maleic anhydride) functionalized graphene oxide[J]. Journal of Applied Polymer Science, 2015,132(22):41987.
[16] NAVIDFAR Amir, SANCAK Alkan, YILDIRIM Kemal Baran, et al. A Study on polyurethane hybrid nanocomposite foams reinforced with multiwalled carbon nanotubes and silica nanoparticles[J]. Polymer: Plastics Technology and Engineering, 2017(12):1-11.
[17] LIU Haihui, HOU Lichen, PENG Weiwei, et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber[J]. Journal of Materials Science, 2012,47(23):8052-8060.
[18] RATHI Sudesh, DAHIYA J B. Polyamide 66/nanoclay composites: synjournal, thermal and flammability properties[J]. Advanced Materials Letters, 2012,3(5):381-387.
doi: 10.5185/amlett
[19] ZHANG Xiang, LI Yubao, LV Guoyu, et al. Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites[J]. Polymer Degradation and Stability, 2006,91(5):1202-1207.
[20] BELL J P, SLADE P E, DUMBLETON J H. Multiple melting in nylon 66[J]. Journal of Polymer Science: Polymer Physics, 1968,6(10):1773-1781.
[21] XU Zhen, GAO Chao. In situ polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules, 2010,43(16):6716-6723.
[22] ZHANG Xingxiang, MENG Qingjie, WANG Xuechen, et al. Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites[J]. Journal of Materials Science, 2010,46(4):923-930.
doi: 10.1007/s10853-010-4836-2
[23] LI Yuanyuan, LIU Ke, XIAO Ru. Preparation and characterization of flame-retarded polyamide 66 with melamine cyanurate by in situ polymerization[J]. Macromolecular Research, 2017,25(8):779-785.
[24] ZHANG Guosheng, YAN Deyue. Crystallization kinetics and melting behavior of nylon 10,10 in nylon 10,10-montmorillonite nanocomposites[J]. Journal of Applied Polymer Science, 2003,88(9):2181-2188.
[25] 李晓川, 瞿芊芊, 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019,40(3):8-12.
LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spunning[J]. Journal of Textile Research, 2019,40(3):8-12.
[26] 黄廷健, 牟浩, 阳知乾, 等. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018,39(10):1-6.
HUANG Tingjian, MOU Hao, YANG Zhiqian, et al. Preparation and properties of high strength and high modulus polyformaldehyde fibers[J]. Journal of Textile Research, 2018,39(10):1-6.
[27] LIU Xiaohui, WU Qiuju, BERGLUND Lars A. Polymorphism in polyamide 66/clay nanocomposites[J]. Polymer, 2002,43(18):4967-4972.
[1] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[2] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
[3] 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/ 磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
[4] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[5] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28.
[6] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[7] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[8] 胡文, 王迪, 陈晓川, 汪军, 李勇. 锯齿轧花中含棉籽棉朵模型的构建与仿真[J]. 纺织学报, 2020, 41(09): 27-32.
[9] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[10] 梅硕, 李金超, 卢士艳, 肖长发, 杨勇, 冯向伟. 高强度聚氯乙烯中空纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 16-20.
[11] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[12] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[13] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[14] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[15] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!