纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 159-165.doi: 10.13475/j.fzxb.20181004707

• 管理与信息化 • 上一篇    下一篇

基于信息物理系统的环锭纺纱智能车间温度闭环精准控制方法

殷士勇, 鲍劲松(), 孙学民, 王佳铖   

  1. 东华大学 机械工程学院, 上海 201620
  • 收稿日期:2018-10-25 修回日期:2018-12-01 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 鲍劲松
  • 作者简介:殷士勇(1979—),男,副教授,博士生。主要研究方向为智能制造与测控。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB1304000);工信部智能制造综合标准化与新模式应用项目(工信厅装函[2018]265号);中央高校基本科研业务费专项资金资助项目(2232017A-03)

Method of temperature close-loop precision control based on cyber-physical systems for intelligent workshop of ring spinning

YIN Shiyong, BAO Jinsong(), SUN Xuemin, WANG Jiacheng   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2018-10-25 Revised:2018-12-01 Online:2019-02-15 Published:2019-02-01
  • Contact: BAO Jinsong

摘要:

环锭纺纱智能车间的温度对纺纱工艺和成纱质量有很大影响,需要精准控制其波动。提出基于信息物理系统的环锭纺纱智能车间的温度控制方法,通过对环锭纺纱温度大数据的分析,形成对空调出风量、加热量等的调节策略,实现温度闭环精准控制。首先,提出温度闭环精准控制架构,该架构分为物理层、通信层、信息层和控制层4层;其次,建立温度闭环精准控制模型,通过数据分析形成温度精准控制策略;最后通过案例仿真智能车间的气流场和温度场,并对实测平均温度值与模拟温度值作对比。结果表明,所实测平均值和模拟值相比偏差不超过 ±0.62 ℃,所提方法可以将智能车间温度精准控制在2 ℃内波动。

关键词: 温度控制模型, 闭环控制, 信息物理系统, 环锭纺纱, 智能车间

Abstract:

The temperature of the intelligent workshop of ring spinning has a great influence on the spinning process and the quality of spinning, and it is necessary to precisely control its fluctuation. The temperature control method of the intelligent workshop of ring spinning based on cyber-physical systems was proposed by analyzing the big data of the ring spinning, forming an adjustment strategy for air conditioning air volume, heating capacity, etc. and the temperature closed-loop precise control was realized. Firstly, the temperature closed-loop precise control architecture was proposed, which is divided into four layers: physical layer, communication layer, information layer and control layer. Secondly, the temperature closed-loop precision control model was established, and the temperature precise control strategy was formed through data analysis. Finally, the airflow field and temperature field of the intelligent workshop were simulated through a case study, and the measured average temperature value was compared with the simulated temperature value. The results show that the deviation between the measured average and the simulated value does not exceed ±0.62 ℃, and the proposed method can accurately control the intelligent workshop temperature to fluctuate within 2 ℃.

Key words: temperature control model, closed-loop control, cyber-physical systems, ring spinning, intelligent workshop

中图分类号: 

  • TS108.8

图1

基于CPS的环锭纺纱智能车间温度闭环精准控制架构"

表1

环锭纺纱车间温度控制范围"

车间 冬季温度 夏季温度
清棉 20~22 29~31
梳棉 22~24 29~31
精梳 22~24 28~30
并条 22~24 29~31
粗纱 22~24 29~31
细纱 24~26 30~32
络筒 20~22 30~32

图2

基于CPS的环锭纺纱智能车间温度闭环精准控制"

图3

环锭纺纱智能车间气流场速度云图"

图4

环锭纺纱智能车间温度场云图"

图5

实测温度数据与模拟温度数据的对比"

[1] BARKER G L, LAIRD J W. Temperature effects on cotton lint moisture regain rates[J]. Transactions of the Asae, 1992,35(2):435-441.
[2] LU W K, FENG Y, ZHU C C, et al. Temperature compensation of the saw yarn tension sensor[J]. Ultrasonics, 2017,76:87-91.
doi: 10.1016/j.ultras.2016.12.006 pmid: 28086109
[3] 董小飞. 浅谈温湿度对纺纱生产的影响[J]. 棉纺织技术, 2007,35(1):33-35.
DONG Xiaofei. Influence of moisture temperature on spinning production[J]. Cotton Textile Technology, 2007,35(1):33-35.
[4] 董桂芹. 纺织厂温湿度控制的系统方案设计及实现[D]. 上海:上海交通大学, 2012: 1-3.
DONG Guiqin. Design and realization of temperature & humidity control system in textile plant[D]. Shanghai: Shanghai Jiaotong University, 2012: 1-3.
[5] 王艳霞. 纺织厂空调系统温湿度控制策略研究[D]. 西安:西安工程大学, 2017: 4-5.
WANG Yanxia. Development of temperature and humidity control strategy foe air conditioning system in textile mill[D]. Xi'an: Xi'an Polytechnic University, 2017: 4-5.
[6] 薛永飞. 纺织厂空调自动控制技术的探讨[J]. 棉纺织技术, 2003,31(11):39-41.
XUE Yongfei. Research of automatic control technology on textile mill air conditioning[J]. Cotton Textile Technology, 2003,31(11):39-41.
[7] 李新禹, 陈杰, 金星, 等. 温湿度独立控制空调技术在细纱车间的应用[J]. 纺织学报, 2009,30(2):112-116.
LI Xinyu, CHEN Jie, JIN Xing, et al. Application of temperature and humidity independent controlled air-conditioning technology in spinning department[J]. Journal of Textile Research, 2009,30(2):112-116.
[8] 潘荣昌, 李海霞, 徐林岚, 等. 纺织厂温湿度自动控制系统的设计与应用[J]. 现代纺织技术, 2011,20(5):10-13.
PAN Rongchang, LI Haixia, Xu Linlan, et al. Design and application of automatic temperature and humidity control system foe textile mills[J]. Advanced Textile Technology, 2011,20(5):10-13.
[9] DI Y H, YU F T. The feasibility research of temperature and humidity independent controlled air-conditioning system in textile factory[J]. Advanced Materials Research, 2012, 374-377(3):635-638.
[10] 何积丰. Cyber-physical systems[J]. 中国计算机学会通讯, 2010,6(1):25-29.
HE Jifeng. Cyber-physical systems[J]. Communications of the CCF, 2010,6(1):25-29.
[11] 殷士勇, 鲍劲松, 邹永毅, 等. 面向智能棉纺生产的CPS架构及其关键技术[J]. 东华大学学报(自然科学版), 2017,43(5):681-688.
YIN Shiyong, BAO Jinsong, ZHOU Yongyi, et al. An architectural and key technologies of CPS for intelligent cotton production[J]. Journal of Donghua Univer-sity (Natural Science Edition), 2017,43(5):681-688.
[12] 王云, 刘东, 翁嘉明, 等. 电网信息物理系统建模与仿真验证平台研究[J]. 中国电机工程学报, 2018,38(1):130-136.
WANG Yun, LIU Dong, WENG Jiaming, et al. The research of power CPS modeling and simulation verification platform[J]. Proceedings of the CSEE, 2018,38(1):130-136.
[13] 侯志霞, 邹方, 吕瑞强, 等. 信息物理融合系统及其在航空制造业应用展望[J]. 航空制造技术, 2014,465(21):47-49.
HOU Zhixia, ZOU Fang, LÜ Ruiqiang, et al. Analysis on cyber-physical system and its application in aeronautical manufacturing industry[J]. Aeronautical Manufacturing Technology, 2014,465(21):47-49.
[14] 方宇恒, 徐中伟, 彭聪. 信息物理融合系统环境下轨道交通信号安全控制规划研究[J]. 城市轨道交通研究, 2018,21(4):25-30,39.
FANG Yuheng, XU Zhongwei, PEI Cong. Study on the planning of rail transit safety signal control in CPS[J]. Urban Mass Transit, 2018,21(4):25-30,39.
[15] 尹存涛. 基于CPS的汽车轮毂制造系统设计[J]. 制造技术与机床, 2017 (10):142-146.
YIN Cuntao. Auto wheel manufacturing system design based on the CPS[J]. Manufacturing Technology & Machine Tool, 2017 (10):142-146.
[16] 许亮, 刘兰英, 李秀喜. 面向化工过程安全运行的信息物理融合系统[J]. 现代化工, 2016 (3):169-172.
XU Liang, LIU Lanying, LI Xiuxi. Cyber-physical system for safe operation of chemical processes[J]. Modern Chemical Industry, 2016 (3):169-172.
[17] 徐钢, 张晓彤, 黎敏, 等. 基于嵌入式CPS模型的产品质量在线管控方法[J]. 机械工程学报, 2017,53(12):94-101.
XU Gang, ZHANG Xiaotong, LI Min, et al. Online monitoring and control method of product quality based on embedded cyber-physical system Models[J]. Journal of Mechanical Engineering, 2017,53(12):94-101.
[18] 黎作鹏, 张天驰, 张菁. 信息物理融合系统(CPS)研究综述[J]. 计算机科学, 2011,38(9):25-31.
LI Zuopeng, ZHANG Tianchi, ZHANG Jing. Survey on the research of cyber-physical system(CPS)[J]. Computer Science, 2011,38(9):25-31.
[1] 彭来湖 吴英刚 王罗俊 胡旭东. 针织圆纬机牵拉张力闭环控制技术[J]. 纺织学报, 2018, 39(10): 125-130.
[2] 顾燕 薛元 高卫东 杨瑞华 郭明瑞. 采用三通道数码纺的色彩渐变纱性能[J]. 纺织学报, 2018, 39(02): 62-67.
[3] 罗婷 纪峰 程隆棣 吉宜军 邓万胜. 双S曲线软牵伸纺纱技术[J]. 纺织学报, 2017, 38(07): 34-38.
[4] 王俊科 夏风林. 闭环控制经编送经系统[J]. 纺织学报, 2017, 38(02): 165-169.
[5] 练军 王晓丽 徐伯俊. 环锭竹节纱竹节长度参数的确定[J]. 纺织学报, 2011, 32(10): 47-0.
[6] 褚结;葛明桥. 旋流器降低环锭纺纱线毛羽的研究[J]. 纺织学报, 2007, 28(12): 34-37.
[7] 张森林;陆洪斌. 基于ARM的电子提花龙头检测器设计[J]. 纺织学报, 2005, 26(4): 65-67.
[8] 姚知霖;陈宗农;詹建潮. 并捻联合机的捻度闭环控制系统[J]. 纺织学报, 2004, 25(01): 81-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!