纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 147-151.doi: 10.13475/j.fzxb.20181102605

• 服装工程 • 上一篇    下一篇

热防护服用织物蜂窝夹芯结构的辐射热性能测评

张泓月1, 李小辉1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2018-11-09 修回日期:2019-07-02 出版日期:2019-10-15 发布日期:2019-10-23
  • 通讯作者: 李小辉
  • 作者简介:张泓月(1995—),女,硕士生。主要研究方向为功能防护服装。
  • 基金资助:
    国家自然科学基金资助项目(51703026);中央高校基本科研业务费专项资金资助项目(2232019G-08)

Evaluation on radiation thermal performance of honeycomb sandwich structure of thermal protective clothing fabrics

ZHANG Hongyue1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education,Donghua University, Shanghai 200051, China
  • Received:2018-11-09 Revised:2019-07-02 Online:2019-10-15 Published:2019-10-23
  • Contact: LI Xiaohui

摘要:

为改善当前热防护服普遍存在的笨重、闷热问题,针对隔热层进行蜂窝结构设计,并对整体热防护服用织物进行辐射热性能的测评。选取当前典型的热防护服用面料,综合考虑外层材料、蜂窝芯厚、边长、壁厚等影响因素,采用正交试验方法设计了32种试验方案,通过激光切割技术进行试样制备,并利用辐射热防护性能测试仪进行测评。实验结果表明:蜂窝夹芯结构可以明显减轻隔热层的质量;外层织物为PBI?matrix的试样比Nomex?IIIA试样具有更好的辐射热防护性能。同时,根据极差分析得出:影响蜂窝夹芯结构的辐射热性能的因素主要是蜂窝芯厚,其次是壁厚,影响最小的是边长;且芯厚越大,边长越小,壁厚越大,蜂窝夹芯层的辐射热防护性能越好。

关键词: 热防护服, 蜂窝夹芯结构, 辐射热, 芯厚

Abstract:

In order to solve the bulky and sultry problem of current thermal protective clothing, a honeycomb structure for the heat insulation layer was designed, and the radiation thermal performance of the overall thermal protective clothing fabric was evaluated. In the experiment, the typical current thermal protection fabric was selected, the outer material, honeycomb core thickness, side length, wall thickness and other influencing factors were taken into account comprehensively. The 32 kinds of experimental schemes were designed by orthogonal experiment method, the sample was prepared by laser cutting technology, and the radiant protective performace(RPP) value was evaluated by the radiation thermal protection performance tester. The results show that the honeycomb sandwich structure can significantly reduce the weight of the insulation layer. The outer fabric for PBI? matrix sample has better heat protective performance than Nomex? IIIA sample. At the same time, according to the range analysis, the main factors affecting the radiative heat performance of honeycomb sandwich structure are the thickness of honeycomb core, the second is the wall thickness, and the least is the side length. The larger the core thickness, the smaller the side length, the larger the wall thickness, and the better the radiative heat protection performance of honeycomb sandwich.

Key words: thermal protective clothing, honeycomb sandwich structure, radiation heat, core thickness

中图分类号: 

  • TS941.73

表1

各层面料结构参数"

试样
编号
试样名称 颜色 面密度/
(g·m-2)
厚度/
mm
透气率/
(L·m-2·s-1)
A1 PBI?matrix 金黄 205.2 0.32 132.70
A2 Nomex?IIIA 藏青 211.6 0.40 206.57
B I-70/PTFE 白色+浅黄 106.1 0.43 0.84
C1 Nomex? 浅黄 128.4 1.04 1 087.65
C2 Nomex? 浅黄 151.3 1.43 988.50
C3 Nomex? 浅黄 229.0 2.04 707.63
C4 Nomex? 浅黄 317.2 2.84 566.58
D 阻燃粘胶 蓝灰 125.6 0.27 1 262.45

表2

三因素混合水平正交表"

试验编号 峰窝孔型编号 芯厚h/mm 边长l/mm 壁厚t/mm
1 E1 1.04 2 2.6
2 E2 1.04 4 5.2
3 E3 1.04 6 7.8
4 E5 1.43 2 5.2
5 E6 1.43 4 2.6
6 E7 1.43 8 7.8
7 E9 2.04 2 7.8
8 E10 2.06 4 2.6
9 E11 2.04 8 5.2
10 E13 2.84 4 7.8
11 E14 2.84 6 5.2
12 E15 2.84 9 2.6

图1

蜂窝孔型方案示意图"

表3

试验方案设计"

蜂窝孔型
结构编号
芯厚
h/mm
蜂窝边长
l/mm
蜂窝壁厚
t/mm
空心率/
%
E1 1.04 2 2.6 32.63
E2 1.04 4 5.2 32.63
E3 1.04 6 7.8 32.63
E4 1.04 - - 0
E5 1.43 2 5.2 15.99
E6 1.43 4 2.6 52.87
E7 1.43 8 7.8 40.94
E8 1.43 - - 0
E9 2.04 2 7.8 9.46
E10 2.04 6 2.6 63.98
E11 2.04 8 5.2 52.87
E12 2.04 - - 0
E13 2.84 4 7.8 22.13
E14 2.84 6 5.2 44.42
E15 2.84 8 2.6 70.90
E16 2.84 - - 0

图2

不同外层条件下蜂窝夹芯结构的RPP值"

[1] 林建波, 殷海波, 曹永强. 消防员隔热防护服的抗辐射热渗透性能[J]. 消防科学与技术, 2015,34(2):241-243.
LIN Jianbo, YIN haibo, CAO Yongqiang. Anti-radiation heat penetration performance of firefighter's heat insulation protective clothing[J]. Fire Science and Technology, 2015,34(2):241-243.
[2] NAEEM J, MAZARI A A, HAVELKA A. Review: Radiation heat transfer through fire fighter protective clothing[J]. Fibres and Textiles in Eastern Europe, 2017,25(4):65-74.
[3] 赵晓明, 刘国熠. 消防避火服用复合织物热防护效能优化研究[J]. 材料导报, 2017,31(1):77-83.
ZHAO Xiaoming, LIU Guoyi. Research on optimization of thermal protection efficiency of composite fabric for fire protection and fire avoidance[J]. Materials Reports, 2017,31(1):77-83.
[4] 赵石楠. 气凝胶型隔热层消防服概念研究[J]. 中国个体防护装备, 2017(3):17-20.
ZHAO Shinan. Research on the concept of aerogel heat insulation layer fire fighting suit[J]. China Personal Protective Equipment, 2017(3):17-20.
[5] SHAID A, WANG L J, PADHYE R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment[J]. Journal of Industrial Textiles, 2016,45(4):611-625.
doi: 10.1177/1528083715610296
[6] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials in fire fighting clothing[J]. Journal of Textile Research, 2014,35(8):124-132.
doi: 10.1177/004051756503500205
[7] PHELPS H, SIDHU H. A mathematical model for heat transfer in fire fighting suits containing phase change materials[J]. Fire Safety Journal, 2015,74:43-47.
doi: 10.1016/j.firesaf.2015.04.007
[8] 王帅, 卢业虎, 王丽君, 等. 热灾害环境对形状记忆消防服面料防护性能的影响[J]. 东华大学学报(自然科学版), 2018,44(1):74-79,99.
WANG Shuai, LU Yehu, WANG Lijun, et al. Influence of thermal disaster environment on the protective performance of shape memory fire protective clothing fabric[J]. Journal of Donghua University(Natural Science Edition), 2018,44(1):74-79,99.
[9] 楼利琴, 傅雅琴. 蜂窝组织棉织物增强聚氨酯复合材料的力学性能[J]. 纺织学报, 2014,35(9):62-66.
LOU Liqin, FU Yaqin. Mechanical properties of honeycomb cotton fabric reinforced polyurethane composites[J]. Journal of Textile Research, 2014,35(9):62-66.
[10] 吴一昊, 王天舒. 考虑辐射效应金属蜂窝夹芯板传热性能的数值模拟分析[J]. 材料导报, 2016,30(S1):164-167.
WU Yihao, WANG Tianshu. Numerical simulation analysis of heat transfer performance of metal honeycomb sandwich plate considering radiation effect[J]. Materials Reports, 2016,30(S1):164-167.
[11] 樊卓志, 孙勇, 段永华, 等. 金属蜂窝板参数对其传热性能的影响[J]. 材料导报, 2013,27(8):147-151.
FAN Zhuozhi, SUN Yong, DUAN Yonghua, et al. Influence of metal honeycomb plate parameters on its heat transfer performance[J]. Materials Reports, 2013,27(8):147-151.
[12] 翟胜男, 陈太球, 蒋春燕, 等. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018,39(8):100-104.
ZHAI Shengnan, CHEN Taiqiu, JIANG Chunyan, et al. Comprehensive evaluation of thermal protection and comfort of outer fabric of fire protective clothing[J]. Journal of Textile Research, 2018,39(8):100-104.
[1] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[2] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[3] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144.
[4] 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019, 40(10): 141-146.
[5] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[6] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[7] 王帅 卢业虎 王丽君 尤禅懿. 低辐射环境下形状记忆合金对防火面料隔热性能的影响[J]. 纺织学报, 2017, 38(08): 114-119.
[8] 李俊 何佳臻 王云仪. 常用高温及低温防护服隔热性能的对比[J]. 纺织学报, 2013, 34(10): 121-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!