纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 9-12.doi: 10.13475/j.fzxb.20181102705

• 纤维材料 • 上一篇    下一篇

热处理对热致液晶聚芳酯纤维结构与性能的影响

杨帆1,2, 刘俊华1,2, 边昂挺1,2, 王燕萍1,2(), 钱琦渊3, 倪建华2, 夏于旻1,2, 何勇1,4, 王依民1,2   

  1. 1.东华大学 纤维材料改性国家重点实验室, 上海 201620
    2.东华大学 材料科学与工程学院, 上海 201620
    3.无锡金通高纤股份有限公司, 江苏 无锡 214161
    4.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2018-11-12 修回日期:2019-08-16 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 王燕萍
  • 作者简介:杨帆(1991—),男,硕士。主要研究方向为聚芳酯纤维的制备及其性能。

Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber

YANG Fan1,2, LIU Junhua1,2, BIAN Angting1,2, WANG Yanping1,2(), QIAN Qiyuan3, NI Jianhua2, XIA Yumin1,2, HE Yong1,4, WANG Yimin1,2   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    2. College of Material Science and Engineering, Donghua University, Shanghai 201620, China
    3. Wuxi Jintong High Performance Fiber Co., Ltd., Wuxi, Jiangsu 214161, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2018-11-12 Revised:2019-08-16 Online:2019-11-15 Published:2019-11-26
  • Contact: WANG Yanping

摘要:

针对热致液晶聚芳酯(TLCPAR)初生纤维结构不稳定、强度不高的问题,对其进行热处理以提高纤维分子质量,进而提高纤维的强度。将处于松弛状态的TLCPAR纤维置于热处理箱中,在不同的热处理温度和时间下进行热处理。借助广角X射线衍射仪、纱线强伸度仪测试与分析纤维的结晶度、晶粒尺寸、晶区取向以及纤维力学性能的变化。结果表明:热处理后TLCPAR纤维的(110)晶面和(211)晶面的晶粒尺寸显著增加,230 ℃热处理48 h后纤维的结晶度增加了37.1%,取向度仅下降2%,说明TLCPAR纤维中大分子链的堆砌更有序、更紧密;热处理后结构变化使TLCPAR纤维断裂强度增加了86.8%,弹性模量增加了20.9%。

关键词: 聚芳酯纤维, 热致液晶聚芳酯, 热处理, 结晶度, 力学性能

Abstract:

In view of the unstable structure and low strength of thermotropic liquid crystalline polyarylate (TLCPAR) as-spun fiber, the heat treatment was carried out to increase the molecular weight and therefore improve the strength of the fiber. The TLCPAR as-spun fiber with relaxed state was treated under the conditions of different heat treatment temperatures and time in nitrogen gas flow. The wide angle X-ray diffraction was adopted to analyze the crystallinity, crystalline size and orientation and the mechanical properties were tested by yarn strength tester. The results show that after heat treatment, the crystalline size of the (110) and (211) planes of the TLCPAR fiber has a significant increase. After being subjected to the heat treatment of 230 ℃ for 48 h, the crystallinity of the fiber increases by 37.1%, and the crystalline orientation decreases only 2%. It is shown that the molecular chains are stacked more orderly and closely after heat treatment. The change in structure of TLCPAR fiber results in an increase of 86.8% in strength and 20.9% in elastic modulus.

Key words: polyarylate fiber, thermotropic liquid crystalline polyarylate, heat treatment, crystallinity, mechanical property

中图分类号: 

  • TQ342.724

图1

热处理前后TLCPAR纤维的二维WAXD图"

图2

热处理前后TLCPAR纤维的一维WAXD曲线"

图3

TLCPAR纤维晶粒尺寸随热处理温度的变化"

图4

TLCPAR纤维结晶度随热处理温度的变化"

表1

不同热处理温度下TLCPAR纤维的晶区取向度"

时间/h 取向度/%
180 ℃ 200 ℃ 205 ℃ 210 ℃ 215 ℃ 220 ℃ 225 ℃ 230 ℃
6 91 91 91 91 91 90 91 91
12 91 91 91 90 91 90 90 90
24 91 90 91 91 91 90 90 90
36 90 91 90 90 90 90 89 89
48 91 90 90 90 90 89 90 89

图5

TLCPAR纤维强度随热处理温度的变化"

图6

TLCPAR纤维弹性模量随热处理时间的变化"

[1] 施伟利, 汪志, 吴静, 等. 热致性液晶聚芳酯纤维的后固相聚合宏观动力学[J]. 合成纤维, 2013,42(1):13-17.
SHI Weili, WANG Zhi, WU Jing, et al. Macroscopic kinetics of post-solid phase polymerization of thermotropic liquid crystalline polyarylate fiber[J]. Synthetic Fiber in China, 2013,42(1):13-17.
[2] SARLIN J, TORMALA P. Heat treatment studies of a TLCP fiber[J]. Journal of Applied Polymer Science, 2010,50(7):1225-1231.
doi: 10.1002/app.1993.070500713
[3] ZHANG W, NICHOLSON T M, DAVIES G R, et al. The effect of branching on the mechanical properties of HBA/HNA copolymer[J]. Polymer, 1996,37(13):2653-2656.
doi: 10.1016/0032-3861(96)87624-5
[4] SARLIN J, TORMALA P. Isothermal heat treatment of a thermotropic LCP fiber[J]. Journal of Polymer Science Part B: Polymer Physics, 1991,29(4):395-405.
doi: 10.1002/polb.1991.090290402
[5] SAW C K, COLLINS G, MENCZEL J, et al. Thermally induced reorganization in LCP fibers[J]. Journal of Thermal Analysis and Calorimetry, 2008,93(1):175-182.
doi: 10.1007/s10973-007-8867-0
[6] 于艳婷, 李宗昊, 王江伟, 等. 喷头拉伸比对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2015,36(9):162-165.
YU Yanting, LI Zonghao, WANG Jiangwei, et al. Influence of spinneret draft on structure and properties of thermotropic liquid crystalline polyarylate fibers[J]. Joumal of Textile Research, 2015,36(9):162-165.
[7] 于金超, 王锐, 杨春雷, 等. 梯度热拉伸共聚芳砜酰胺纤维的结构与性能[J]. 合成纤维工业, 2014,37(2):1-5.
YU Jinchao, WANG Rui, YANG Chunlei, et al. Structure and properties of gradient thermal stretch copolyarylsulfonamide fibers[J]. China Synthetic Fiber Industry, 2014,37(2):1-5.
[8] CHU B, HSIAO B S. Small-angle X-ray scattering of polymers[J]. Chemical Reviews, 2001,101(32):1727-1761.
doi: 10.1021/cr9900376
[9] SAUER B, KAMPERT W G, MCLEAN R S. Thermal and morphological properties of main chain liquid crystalline polymers[J]. Polymer, 2003,44(9):2721-2738.
doi: 10.1016/S0032-3861(03)00083-1
[10] WIBERG G, GEDDE U W. Structural relaxation of an oriented thermotropic liquid crystalline copolyester assessed by infrared spectroscopy and X-ray diffrac-tion[J]. Polymer, 1997,38(15):3753-3759.
doi: 10.1016/S0032-3861(96)00949-4
[11] 于艳婷. 热致液晶聚芳酯纤维的结构和性能研究[D]. 上海:东华大学, 2016: 41-53.
YU Yanting. Study on structure and properties of thermotropic liquid crystalline polyarylate fibers[D]. Shanghai: Donghua University, 2016: 41-53.
[1] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[4] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[5] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[6] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[7] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[8] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[9] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
[10] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[11] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[12] 吴利伟 王伟 林佳弘 姜茜. 芳纶/ 超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[13] 刘淑萍 李亮 刘让同 崔世忠 王艳婷. 羧甲基纤维素钠改性角蛋白膜的结构与性能[J]. 纺织学报, 2019, 40(06): 14-19.
[14] 刘金鑫 张海峰 张星 黄晨 郑晓冰 靳向煜. 多级拉伸与热定型对聚乙烯/ 聚丙烯双组分纤维结构和性能的影响 [J]. 纺织学报, 2019, 40(05): 24-29.
[15] 莫达杰 李旭明 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯) / 聚乳酸阻燃纤维的制备及其性能 [J]. 纺织学报, 2019, 40(05): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!